Home
Class 12
MATHS
The magnitude of vec(a)xx vec(b) if vec(...

The magnitude of `vec(a)xx vec(b)` if `vec(a)=2hat(i)+hat(k)` and `vec(b)=hat(i)+hat(j)+hat(k)` is ___________.

Text Solution

AI Generated Solution

The correct Answer is:
To find the magnitude of the cross product \(\vec{a} \times \vec{b}\) where \(\vec{a} = 2\hat{i} + \hat{k}\) and \(\vec{b} = \hat{i} + \hat{j} + \hat{k}\), we can follow these steps: ### Step 1: Write the vectors in component form \[ \vec{a} = 2\hat{i} + 0\hat{j} + 1\hat{k} \] \[ \vec{b} = 1\hat{i} + 1\hat{j} + 1\hat{k} \] ### Step 2: Set up the determinant for the cross product The cross product \(\vec{a} \times \vec{b}\) can be calculated using the determinant of a matrix formed by the unit vectors and the components of \(\vec{a}\) and \(\vec{b}\): \[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 0 & 1 \\ 1 & 1 & 1 \end{vmatrix} \] ### Step 3: Calculate the determinant Using the determinant formula, we expand it as follows: \[ \vec{a} \times \vec{b} = \hat{i} \begin{vmatrix} 0 & 1 \\ 1 & 1 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & 1 \\ 1 & 1 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & 0 \\ 1 & 1 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \(\begin{vmatrix} 0 & 1 \\ 1 & 1 \end{vmatrix} = (0 \cdot 1 - 1 \cdot 1) = -1\) 2. \(\begin{vmatrix} 2 & 1 \\ 1 & 1 \end{vmatrix} = (2 \cdot 1 - 1 \cdot 1) = 1\) 3. \(\begin{vmatrix} 2 & 0 \\ 1 & 1 \end{vmatrix} = (2 \cdot 1 - 0 \cdot 1) = 2\) Putting it all together: \[ \vec{a} \times \vec{b} = \hat{i}(-1) - \hat{j}(1) + \hat{k}(2) = -\hat{i} - \hat{j} + 2\hat{k} \] ### Step 4: Write the result in vector form Thus, we have: \[ \vec{a} \times \vec{b} = -\hat{i} - \hat{j} + 2\hat{k} \] ### Step 5: Find the magnitude of the cross product The magnitude of a vector \(\vec{v} = a\hat{i} + b\hat{j} + c\hat{k}\) is given by: \[ |\vec{v}| = \sqrt{a^2 + b^2 + c^2} \] For our vector \(-\hat{i} - \hat{j} + 2\hat{k}\): \[ |\vec{a} \times \vec{b}| = \sqrt{(-1)^2 + (-1)^2 + (2)^2} = \sqrt{1 + 1 + 4} = \sqrt{6} \] ### Final Answer The magnitude of \(\vec{a} \times \vec{b}\) is \(\sqrt{6}\). ---
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Objective Type Questions (C. True/False Questions)|10 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Objective Type Questions (D. Very Short Answers Type Questions)|25 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Objective Type Questions (A. Multiple Choice Questions)|40 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

Find |vec(a)xx vec(b)| , if vec(a)=2hat(i)+hat(j)+3hat(k) and vec(b)=3hat(i)+5hat(j)-2hat(k) .

Find the angle between (vec(a)+vec(b)) and (vec(a)-vec(b)) , if vec(a)=(2 hat(i)-hat(j)+3hat(k)) and vec(b)=(3hat(i)+hat(j)+2hat(k)) .

Find ( vec (a) xxvec (b)) and |vec(a) xx vec (b)| ,when (i) vec(a) = hat(i)-hat(j)+ 2hat(k) and vec(b)= 2 hat(i)+3 hat(j)-4hat(k) (ii) vec(a)= 2hat (i)+hat(j)+ 3hat(k) and vec(b)= 3hat(i)+5 hat(j) - 2 hat(k) (iii) vec(a)=hat(i)- 7 hat(j)+ 7hat(k) and vec(b) = 3 hat(i)-2hat(j)+2 hat(k) (iv) vec(a)= 4hat(i)+ hat(j)- 2hat(k) and vec(b) = 3 hat(i)+hat(k) (v) vec(a) = 3 hat(i) + 4 hat(j) and vec(b) = hat(i)+hat(j)+hat(k)

Find the angle between the vectors vec(a) and vec(b) , when (i) vec(a)=hat(i)-2hat(j)+3 hat(k) and vec(b)=3hat(i)-2hat(j)+hat(k) (ii) vec(a)=3 hat(i)+hat(j)+2hat(k) and vec(b)=2hat(i)-2hat(j)+4 hat(k) (iii) vec(a)=hat(i)-hat(j) and vec(b)=hat(j)+hat(k) .

(i) If vec(a)=hat(i)+2hat(j)-3hat(k) and vec(b)=3hat(i)-hat(j)+2hat(k) , show that (vec(a)+vec(b)) is perpendicular to (vec(A)-vec(b)) . (ii) If vec(a)=(5hat(i)-hat(j)-3 hat(k)) and vec(b)=(hat(i)+3hat(j)-5hat(k)) then show that (vec(a)+vec(b)) and (vec(a)-vec(b)) are orthogonal.

Find ,vec a xxvec b,, if quad vec a=2hat i+hat k and vec b=hat i+hat j+hat k

Find vec(A).vec(b) when (i) vec(a)=hat(i)-2hat(j)+hat(k) and vec(b)=3 hat(i)-4 hat(j)-2 hat(k) (ii) vec(a)=hat(i)+2hat(j)+3hat(k) and vec(b)=-2hat(j)+4hat(k) (iii) vec(a)=hat(i)-hat(j)+5hat(k) and vec(b)=3 hat(i)-2 hat(k)

Find vec(a).(vec(b)xx vec(c )) if : vec(a)=2hat(i)+hat(j)+3hat(k), vec(b)=-hat(i)+2hat(j)+hat(k) and vec(c )=3hat(i)+hat(j)+2hat(k) .

verify that vec(a) xx (vec(b)+ vec(c))=(vec(a) xx vec(b))+(vec(a) xx vec(c)) , "when" (i) vec(a)= hat(i)- hat(j)-3 hat(k), vec(b)= 4 hat(i)-3 hat(j) + hat(k) and vec(c)= 2 hat(i) - hat(j) + 2 hat(k) (ii) vec(a)= 4 hat(i)-hat(j)+hat(k), vec(b)= hat(i)+hat(j)+ hat(k) and vec(c)= hat(i)- hat(j)+hat(k).

If vec(a)=(hat(i)-hat(j)+2hat(k)) and vec(b)=(2hat(i)+3hat(j)-4hat(k)) then |vec(a)xx vec(b)|=?

MODERN PUBLICATION-VECTOR ALGEBRA -Objective Type Questions (B. Fill in the Blanks)
  1. The magnitude of projection of (2hat(i)-hat(j)+hat(k)) " on" (hat(i)-2...

    Text Solution

    |

  2. Vector of magnitude 5 units and in the direction opposite to 2hat(i)+3...

    Text Solution

    |

  3. Find the sum of vectors vec a= hat i-2 hat j+ hat k ,\ vec b=-2 hat ...

    Text Solution

    |

  4. The value of 'a' when the vectors : 2hat(i)-3hat(j)+4hat(k) and a...

    Text Solution

    |

  5. If vec(a)=2hat(i)+hat(j)-2hat(k), then |vec(a)|= .

    Text Solution

    |

  6. The direction - ratios of the vector vec(a)=6hat(i)-3hat(j)+2hat(k) ar...

    Text Solution

    |

  7. Find the projection of the vector hat i- hat jon the vector hat i+ ...

    Text Solution

    |

  8. If vec a is a unit vector and (vec x - vec a).(vec x + vec a)=8, then ...

    Text Solution

    |

  9. If vec(p) is a unit vector and (vec(x)-vec(p)).(vec(x)+vec(p))=80, the...

    Text Solution

    |

  10. Angle between hat(i)-hat(j) and hat(j)-hat(k) is .

    Text Solution

    |

  11. Find the value of : (i) (hat(i) xxhat(j))*hat (k) + hat(i)* hat(j) ...

    Text Solution

    |

  12. (hat(k)xx hat(j)).hat(i)+hat(j).hat(k)= ………….

    Text Solution

    |

  13. (hat(k)xx hat(i)).hat(j)+hat(i).hat(k) …………..

    Text Solution

    |

  14. Find lambda if (2 hat i+6 hat j+14 hat k)x\ ( hat i-\ lambda hat j+7 h...

    Text Solution

    |

  15. The magnitude of vec(a)xx vec(b) if vec(a)=2hat(i)+hat(k) and vec(b)...

    Text Solution

    |

  16. If any two of three vectors vec(a), vec(b), vec(c ) are parallel, then...

    Text Solution

    |

  17. The value of 'lambda' such that the vectors : 3hat(i)+lambdahat(j)+5...

    Text Solution

    |