Home
Class 12
MATHS
If any two of three vectors vec(a), vec(...

If any two of three vectors `vec(a), vec(b), vec(c )` are parallel, then `[vec(a)vec(b)vec(c )]=` __________.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the value of the scalar triple product \([ \vec{a} \, \vec{b} \, \vec{c} ]\) given that any two of the three vectors \(\vec{a}, \vec{b}, \vec{c}\) are parallel. ### Step-by-Step Solution: 1. **Understanding Parallel Vectors**: If two vectors are parallel, it means they point in the same direction or in exactly opposite directions. For example, if \(\vec{b}\) and \(\vec{c}\) are parallel, then we can express this as \(\vec{b} = k \vec{c}\) for some scalar \(k\). 2. **Scalar Triple Product Definition**: The scalar triple product \([ \vec{a} \, \vec{b} \, \vec{c} ]\) is defined as: \[ [ \vec{a} \, \vec{b} \, \vec{c} ] = \vec{a} \cdot (\vec{b} \times \vec{c}) \] where \(\vec{b} \times \vec{c}\) is the cross product of \(\vec{b}\) and \(\vec{c}\). 3. **Cross Product of Parallel Vectors**: If \(\vec{b}\) and \(\vec{c}\) are parallel, the angle \(\theta\) between them is either \(0\) or \(180\) degrees. In both cases, the sine of the angle is: \[ \sin(0) = 0 \quad \text{and} \quad \sin(180) = 0 \] Therefore, the magnitude of the cross product \(\vec{b} \times \vec{c}\) is: \[ |\vec{b} \times \vec{c}| = |\vec{b}| |\vec{c}| \sin(\theta) = 0 \] This implies: \[ \vec{b} \times \vec{c} = \vec{0} \] 4. **Substituting into the Scalar Triple Product**: Now substituting back into the scalar triple product: \[ [ \vec{a} \, \vec{b} \, \vec{c} ] = \vec{a} \cdot (\vec{b} \times \vec{c}) = \vec{a} \cdot \vec{0} = 0 \] 5. **Conclusion**: Thus, if any two of the three vectors \(\vec{a}, \vec{b}, \vec{c}\) are parallel, the value of the scalar triple product is: \[ [ \vec{a} \, \vec{b} \, \vec{c} ] = 0 \] ### Final Answer: \[ [ \vec{a} \, \vec{b} \, \vec{c} ] = 0 \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Objective Type Questions (C. True/False Questions)|10 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Objective Type Questions (D. Very Short Answers Type Questions)|25 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Objective Type Questions (A. Multiple Choice Questions)|40 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

For any three coplanar vectors vec(a), vec(b), vec(c ) , show that vec(a)-vec(b), vec(b)-vec(c ), vec(c )-vec(a) are coplanar.

Let three vectors vec(a), vec(b) and vec(c ) be such that vec(a) xx vec(b) = vec(c), vec(b) xx vec(c) = vec(a) and |vec(a)| = 2 . Then which one of the following is not true ?

If vec(a), vec(b), vec(c ) are three vectors such that vec(a)+vec(b)+vec(c )=0 , then prove that : vec(a)xx vec(b)=vec(b)xx vec(c )=vec(c )xx vec(a) and hence, show that [vec(a)vec(b)vec(c )]=0 .

If vec(a) , vec(b) and vec(c ) be three vectors such that vec(a) + vec(b) + vec(c )=0 and |vec(a)|=3, |vec(b)|=5,|vec(C )|=7 , find the angle between vec(a) and vec(b) .

Let vec(a), vec(b) and vec(c) be three vectors such that vec(a) + vec(b) + vec(c) = 0 and |vec(a)|=10, |vec(b)|=6 and |vec(c) |=14 . What is the angle between vec(a) and vec(b) ?

If vec(a),vec(b) and vec(c ) are three vectors such that vec(a)+vec(b)+vec(c )=vec(0) and |vec(a)|=2,|vec(b)|=3 and |vec(c )|=5 , then the value of vec(a)*vec(b)+vec(b)*vec(c)+vec(c)*vec(a) is

Let vec(a), vec(b) and vec(c) be three vectors such that vec(a) + vec(b) + vec(c) = 0 and |vec(a)|=10, |vec(b)|=6 and |vec(c) |=14 . What is vec(a). vec(b) + vec(b).vec(c)+ vec(c). vec(a) . equal to ?

For any three vectors vec a;vec b;vec c find [vec a+vec b;vec b+vec c;vec c+vec a]

Three vector vec(A) , vec(B) , vec(C ) satisfy the relation vec(A)*vec(B)=0 and vec(A).vec(C )=0 . The vector vec(A) is parallel to

MODERN PUBLICATION-VECTOR ALGEBRA -Objective Type Questions (B. Fill in the Blanks)
  1. The magnitude of projection of (2hat(i)-hat(j)+hat(k)) " on" (hat(i)-2...

    Text Solution

    |

  2. Vector of magnitude 5 units and in the direction opposite to 2hat(i)+3...

    Text Solution

    |

  3. Find the sum of vectors vec a= hat i-2 hat j+ hat k ,\ vec b=-2 hat ...

    Text Solution

    |

  4. The value of 'a' when the vectors : 2hat(i)-3hat(j)+4hat(k) and a...

    Text Solution

    |

  5. If vec(a)=2hat(i)+hat(j)-2hat(k), then |vec(a)|= .

    Text Solution

    |

  6. The direction - ratios of the vector vec(a)=6hat(i)-3hat(j)+2hat(k) ar...

    Text Solution

    |

  7. Find the projection of the vector hat i- hat jon the vector hat i+ ...

    Text Solution

    |

  8. If vec a is a unit vector and (vec x - vec a).(vec x + vec a)=8, then ...

    Text Solution

    |

  9. If vec(p) is a unit vector and (vec(x)-vec(p)).(vec(x)+vec(p))=80, the...

    Text Solution

    |

  10. Angle between hat(i)-hat(j) and hat(j)-hat(k) is .

    Text Solution

    |

  11. Find the value of : (i) (hat(i) xxhat(j))*hat (k) + hat(i)* hat(j) ...

    Text Solution

    |

  12. (hat(k)xx hat(j)).hat(i)+hat(j).hat(k)= ………….

    Text Solution

    |

  13. (hat(k)xx hat(i)).hat(j)+hat(i).hat(k) …………..

    Text Solution

    |

  14. Find lambda if (2 hat i+6 hat j+14 hat k)x\ ( hat i-\ lambda hat j+7 h...

    Text Solution

    |

  15. The magnitude of vec(a)xx vec(b) if vec(a)=2hat(i)+hat(k) and vec(b)...

    Text Solution

    |

  16. If any two of three vectors vec(a), vec(b), vec(c ) are parallel, then...

    Text Solution

    |

  17. The value of 'lambda' such that the vectors : 3hat(i)+lambdahat(j)+5...

    Text Solution

    |