Home
Class 12
MATHS
The value of 'lambda' such that the vect...

The value of `'lambda'` such that the vectors :
`3hat(i)+lambdahat(j)+5hat(k), hat(i)+2hat(j)-3hat(k)` and `2hat(i)-hat(j)+hat(k)` are coplanar is __________.

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \lambda \) such that the vectors \( \mathbf{A} = 3\hat{i} + \lambda\hat{j} + 5\hat{k} \), \( \mathbf{B} = \hat{i} + 2\hat{j} - 3\hat{k} \), and \( \mathbf{C} = 2\hat{i} - \hat{j} + \hat{k} \) are coplanar, we can use the condition that the scalar triple product of the vectors must be zero. ### Step 1: Write the vectors in component form. The vectors are: - \( \mathbf{A} = (3, \lambda, 5) \) - \( \mathbf{B} = (1, 2, -3) \) - \( \mathbf{C} = (2, -1, 1) \) ### Step 2: Set up the determinant for the scalar triple product. The scalar triple product can be represented as the determinant of a matrix formed by the components of the vectors: \[ \begin{vmatrix} 3 & \lambda & 5 \\ 1 & 2 & -3 \\ 2 & -1 & 1 \end{vmatrix} \] ### Step 3: Calculate the determinant. Using the determinant formula for a 3x3 matrix: \[ \text{Det} = a(ei - fh) - b(di - fg) + c(dh - eg) \] where: - \( a = 3, b = \lambda, c = 5 \) - \( d = 1, e = 2, f = -3 \) - \( g = 2, h = -1, i = 1 \) The determinant becomes: \[ \text{Det} = 3 \begin{vmatrix} 2 & -3 \\ -1 & 1 \end{vmatrix} - \lambda \begin{vmatrix} 1 & -3 \\ 2 & 1 \end{vmatrix} + 5 \begin{vmatrix} 1 & 2 \\ 2 & -1 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \( \begin{vmatrix} 2 & -3 \\ -1 & 1 \end{vmatrix} = (2)(1) - (-3)(-1) = 2 - 3 = -1 \) 2. \( \begin{vmatrix} 1 & -3 \\ 2 & 1 \end{vmatrix} = (1)(1) - (-3)(2) = 1 + 6 = 7 \) 3. \( \begin{vmatrix} 1 & 2 \\ 2 & -1 \end{vmatrix} = (1)(-1) - (2)(2) = -1 - 4 = -5 \) ### Step 4: Substitute back into the determinant equation. Now substituting these values back, we have: \[ \text{Det} = 3(-1) - \lambda(7) + 5(-5) \] \[ = -3 - 7\lambda - 25 \] \[ = -28 - 7\lambda \] ### Step 5: Set the determinant to zero for coplanarity. For the vectors to be coplanar, we set the determinant to zero: \[ -28 - 7\lambda = 0 \] ### Step 6: Solve for \( \lambda \). \[ -7\lambda = 28 \] \[ \lambda = -\frac{28}{7} = -4 \] ### Final Answer: The value of \( \lambda \) is \( -4 \). ---
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Objective Type Questions (C. True/False Questions)|10 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Objective Type Questions (D. Very Short Answers Type Questions)|25 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Objective Type Questions (A. Multiple Choice Questions)|40 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

Find the value of 'lambda' such that the vectors : 3hat(i)+lambda hat(j)+5hat(k), hat(i)+2hat(j)-3hat(k) and 2hat(i)-hat(j)+hat(k) are coplanar.

Find the value of 'lambda' such that vectors : 3hat(i)+lambda hat(j)+5hat(k), hat(i)+2hat(j)-3hat(k) and 2hat(i)-hat(j)+hat(k) are coplanar.

What is the value of m if the vectors 2hat(i)-hat(j)+hat(k), hat(i)+2hat(j)-3hat(k) and 3hat(i)+m hat(j)+5 hat(k) are coplanar?

Show that the vectors hat(i)-3hat(j)+4hat(k),2hat(i)-hat(j)+2hat(k)and 4hat(i)-7hat(j)+10hat(k) are coplanar.

Find 'lambda' if the vectors : hat(i)-hat(j)+hat(k), 3hat(i)+hat(j)+2hat(k) and hat(i)+lambda hat(j)-3hat(k) are coplanar.

Show that the vectors hat(i)-hat(j)-6hat(k),hat(i)-3hat(j)+4hat(k)and2hat(i)-5hat(j)+3hat(k) are coplanar.

What is the value of lambda for which the vectors hat(i)-hat(j)+hat(k), 2 hat(i)+hat(j)-hat(k) and lambda hat(i)-hat(j)+lambda hat(k) are co-planar?

What is the value of lamda for which the vectors hat(i) - hat(j) + hat(k), 2hat(i) + hat(j)- hat(k) and lamda hat(i) - hat(j)+ lamda (k) are coplanar

What is the value of m, if the vector 2 hat(i) - hat(j) + hat(k), hat(i) + 2hat(j)- 3hat(k) and 3hat(i) + m hat(j)+ 5hat(k) are coplanar?

MODERN PUBLICATION-VECTOR ALGEBRA -Objective Type Questions (B. Fill in the Blanks)
  1. The magnitude of projection of (2hat(i)-hat(j)+hat(k)) " on" (hat(i)-2...

    Text Solution

    |

  2. Vector of magnitude 5 units and in the direction opposite to 2hat(i)+3...

    Text Solution

    |

  3. Find the sum of vectors vec a= hat i-2 hat j+ hat k ,\ vec b=-2 hat ...

    Text Solution

    |

  4. The value of 'a' when the vectors : 2hat(i)-3hat(j)+4hat(k) and a...

    Text Solution

    |

  5. If vec(a)=2hat(i)+hat(j)-2hat(k), then |vec(a)|= .

    Text Solution

    |

  6. The direction - ratios of the vector vec(a)=6hat(i)-3hat(j)+2hat(k) ar...

    Text Solution

    |

  7. Find the projection of the vector hat i- hat jon the vector hat i+ ...

    Text Solution

    |

  8. If vec a is a unit vector and (vec x - vec a).(vec x + vec a)=8, then ...

    Text Solution

    |

  9. If vec(p) is a unit vector and (vec(x)-vec(p)).(vec(x)+vec(p))=80, the...

    Text Solution

    |

  10. Angle between hat(i)-hat(j) and hat(j)-hat(k) is .

    Text Solution

    |

  11. Find the value of : (i) (hat(i) xxhat(j))*hat (k) + hat(i)* hat(j) ...

    Text Solution

    |

  12. (hat(k)xx hat(j)).hat(i)+hat(j).hat(k)= ………….

    Text Solution

    |

  13. (hat(k)xx hat(i)).hat(j)+hat(i).hat(k) …………..

    Text Solution

    |

  14. Find lambda if (2 hat i+6 hat j+14 hat k)x\ ( hat i-\ lambda hat j+7 h...

    Text Solution

    |

  15. The magnitude of vec(a)xx vec(b) if vec(a)=2hat(i)+hat(k) and vec(b)...

    Text Solution

    |

  16. If any two of three vectors vec(a), vec(b), vec(c ) are parallel, then...

    Text Solution

    |

  17. The value of 'lambda' such that the vectors : 3hat(i)+lambdahat(j)+5...

    Text Solution

    |