Home
Class 12
MATHS
If |vec(a)|=|vec(b)|, then vec(a)=vec(b)...

If `|vec(a)|=|vec(b)|`, then `vec(a)=vec(b)`.

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Objective Type Questions (D. Very Short Answers Type Questions)|25 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Ncert File Question from Ncert Book (Exercise 10.1)|5 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Objective Type Questions (B. Fill in the Blanks)|17 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

If vec(a)=-vec(b) , then |vec(a)|=|vec(b)| .

If vec(a)=vec(b)+vec(c ) , then |vec(a)|=|vec(b)+vec(c )| .

Prove that |vec(a)|-|vec(b)|le |vec(a)-vec(b)| .

If |vec a|=|vec b|, then (vec a+vec b)vec a-vec b= a. positive b.negative c.0 d.none of these

Let |vec(a)| # 0.|vec(b)| ne 0 (vec(a) + vec(b)). (vec(a) + vec(b)) = |vec(a)|^(2) + |vec(b)|^(2) holds if and only if

Consider the following inequalities in respect of vector vec(a) and vec(b) 1. |vec(a) + vec(b)| le |vec(a)| + |vec(b)| 2. |vec(a) - vec(b)| ge |vec(a)|- |vec(b)| Which of the above is/are correct?

Let |vec(a)|~=0, |vec(b)|~=0 (vec(a)+vec(b)).(vec(a)+vec(b))=|vec(a)|^(2)+|vec(b)|^(2) holds if and only if

Establish the following vector in equalities: (i) |vec(a)-vec(b)| le |vec(a)| +|vec(b)| (ii) |vec(a) -vec(b)| ge |vec(a)| - |vec(b)| What does the equality sign apply ?

Consider the following inequalities in respect of vectors vec(a) and vec(b) : 1. |vec(a)+vec(b)| £|vec(a)|+|vec(b)| 2. |vec(a)-vec(b)|3|vec(a)|-|vec(b)| Which of the above is/are correct ?