Home
Class 12
MATHS
If vec(a)=vec(b)+vec(c ), then |vec(a)|=...

If `vec(a)=vec(b)+vec(c )`, then `|vec(a)|=|vec(b)+vec(c )|`.

Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Objective Type Questions (D. Very Short Answers Type Questions)|25 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Ncert File Question from Ncert Book (Exercise 10.1)|5 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Objective Type Questions (B. Fill in the Blanks)|17 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

If vec(a).vec(b)xx vec(c ) ≠ 0 and vec(a')=(vec(b)xx vec(c ))/(vec(a).vec(b)xx vec(c )), vec(b')=(vec(c )xx vec(a))/(vec(a).vec(b)xx vec(c )), vec(c')=(vec(a)xx vec(b))/(vec(a).vec(b)xx vec(c )) , show that : vec(a').(vec(b')xx vec(c'))=(1)/(vec(a).(vec(b)xx vec(c )))

If vec(a).vec(b)xx vec(c )≠0 and vec(a')=(vec(b)xx vec(c ))/(vec(a).vec(b)xx vec(c )), vec(b')=(vec(c )xx vec(a))/(vec(a).vec(b)xx vec(c )), vec(c')=(vec(a)xx vec(b))/(vec(a).vec(b)xx vec(c )) , show that : vec(a).vec(a')+vec(b).vec(b')+vec(c ).vec(c')=3

If vec(a).vec(b)xx vec(c ) ≠ 0 and vec(a')=(vec(b)xx vec(c ))/(vec(a).vec(b)xx vec(c )), vec(b')=(vec(c )xx vec(a))/(vec(a).vec(b)xx vec(c )), vec(c')=(vec(a)xx vec(b))/(vec(a).vec(b)xx vec(c )) , show that : vec(a).vec(a')+vec(b). vec(b')+vec(c ). vec(c')=3 .

If vec(a)+vec(b)+vec(c )=0 " and" |vec(a)|=3,|vec(b)|=5, |vec(c )|=7 , then find the value of vec(a),vec(b)+vec(b).vec(c )+vec(c ).vec(a) .

Let ABC be a triangle whose circumcentre is at P. If the position vectors of A, B, C and P are vec(a) , vec(b) , vec(c ) and (vec(a) + vec(b) + vec(c ))/(4) respectively, then the position vector of the orthocentre of this triangle is

If any two of three vectors vec(a), vec(b), vec(c ) are parallel, then [vec(a)vec(b)vec(c )]= __________.

If vec(a) , vec(b) and vec(c ) be three vectors such that vec(a) + vec(b) + vec(c )=0 and |vec(a)|=3, |vec(b)|=5,|vec(C )|=7 , find the angle between vec(a) and vec(b) .

Consider the following statements 1. For any three vectors vec(a) vec(b) vec(c ) vec(a).{(vec(b) + vec(c )) xx vec(a) + vec(b) + vec(c )}=0 2. for any three coplanar vectors vec(d), vec(e ), vec(f), (vec(d) xx vec(e )) .vec(f )= 0