Home
Class 12
MATHS
[vec(a)vec(b)vec(c )]=[vec(b)vec(c )vec(...

`[vec(a)vec(b)vec(c )]=[vec(b)vec(c )vec(a)]=[vec(c )vec(a)vec(b)]`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem given by the equation \([ \vec{a} \, \vec{b} \, \vec{c} ] = [ \vec{b} \, \vec{c} \, \vec{a} ] = [ \vec{c} \, \vec{a} \, \vec{b} ]\), we will analyze the determinants formed by these vectors. ### Step-by-step Solution: 1. **Understanding the Determinant**: The notation \([ \vec{a} \, \vec{b} \, \vec{c} ]\) represents the scalar triple product, which can be calculated using the determinant of a matrix formed by the components of the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\). 2. **Define the Vectors**: Let: \[ \vec{a} = (a_x, a_y, a_z), \quad \vec{b} = (b_x, b_y, b_z), \quad \vec{c} = (c_x, c_y, c_z) \] 3. **Set Up the Determinants**: The scalar triple product can be expressed as: \[ [ \vec{a} \, \vec{b} \, \vec{c} ] = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix} \] Similarly, we can write: \[ [ \vec{b} \, \vec{c} \, \vec{a} ] = \begin{vmatrix} b_x & b_y & b_z \\ c_x & c_y & c_z \\ a_x & a_y & a_z \end{vmatrix} \] and \[ [ \vec{c} \, \vec{a} \, \vec{b} ] = \begin{vmatrix} c_x & c_y & c_z \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix} \] 4. **Using Properties of Determinants**: The properties of determinants tell us that swapping two rows changes the sign of the determinant. Therefore: - Swapping the first and second rows in the determinant of \([ \vec{b} \, \vec{c} \, \vec{a} ]\) gives: \[ [ \vec{b} \, \vec{c} \, \vec{a} ] = -[ \vec{c} \, \vec{b} \, \vec{a} ] \] - Similarly, swapping the first and second rows in the determinant of \([ \vec{c} \, \vec{a} \, \vec{b} ]\) gives: \[ [ \vec{c} \, \vec{a} \, \vec{b} ] = -[ \vec{a} \, \vec{c} \, \vec{b} ] \] 5. **Equating the Determinants**: Since we have: \[ [ \vec{a} \, \vec{b} \, \vec{c} ] = [ \vec{b} \, \vec{c} \, \vec{a} ] = [ \vec{c} \, \vec{a} \, \vec{b} ] \] we can conclude that all three determinants are equal. Thus, if one of them is zero, all are zero, indicating that the vectors are coplanar. 6. **Conclusion**: The given condition implies that the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) are coplanar, which means that the scalar triple product is zero.
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Objective Type Questions (D. Very Short Answers Type Questions)|25 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Ncert File Question from Ncert Book (Exercise 10.1)|5 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Objective Type Questions (B. Fill in the Blanks)|17 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

Prove that vec(a)xx(vec(b)+vec(c))+vec(b)xx(vec(c)+vec(a))+vec(c)xx(vec(a)+vec(b))=0

Let vec(a), vec(b), vec(c) be non-coplanar vectors and vec(p)=(vec(b)xxvec(c))/([vec(a)vec(b)vec(c)]), vec(q)=(vec(c)xxvec(a))/([vec(a)vec(b)vec(c)]), vec(r)=(vec(a)xxvec(b))/([vec(a)vec(b)vec(c)]) . What is the value of (vec(a)-vec(b)-vec(c)).vec(p)+(vec(b)-vec(c)-vec(a)).vec(q)+(vec(c)-vec(a)-vec(b)).vec(r) ?

If vec(a).vec(b)xx vec(c ) ≠ 0 and vec(a')=(vec(b)xx vec(c ))/(vec(a).vec(b)xx vec(c )), vec(b')=(vec(c )xx vec(a))/(vec(a).vec(b)xx vec(c )), vec(c')=(vec(a)xx vec(b))/(vec(a).vec(b)xx vec(c )) , show that : vec(a').(vec(b')xx vec(c'))=(1)/(vec(a).(vec(b)xx vec(c )))

If vec(a).vec(b)xx vec(c )≠0 and vec(a')=(vec(b)xx vec(c ))/(vec(a).vec(b)xx vec(c )), vec(b')=(vec(c )xx vec(a))/(vec(a).vec(b)xx vec(c )), vec(c')=(vec(a)xx vec(b))/(vec(a).vec(b)xx vec(c )) , show that : vec(a).vec(a')+vec(b).vec(b')+vec(c ).vec(c')=3

If vec(a).vec(b)xx vec(c ) ≠ 0 and vec(a')=(vec(b)xx vec(c ))/(vec(a).vec(b)xx vec(c )), vec(b')=(vec(c )xx vec(a))/(vec(a).vec(b)xx vec(c )), vec(c')=(vec(a)xx vec(b))/(vec(a).vec(b)xx vec(c )) , show that : vec(a).vec(a')+vec(b). vec(b')+vec(c ). vec(c')=3 .

Let vec(a), vec(b) and vec(c) be three mutually perpendicular vectors each of unit magnitud. If vec(A)=vec(a)+vec(b)+vec(c), vec(B)=vec(a)-vec(b)+vec(c) and vec(C)=vec(a)-vec(b)-vec(c) , then which one of the following is correct?

Let vec(a), vec(b), vec(c) be vectors of length 3, 4, 5 respectively. Let vec(a) be perpendicular to vec(b)+vec(c), vec(b) to vec(c)+vec(a) and vec(c) to vec(a)+vec(b) . Then |vec(a)+vec(b)+vec(c)| is :

Prove that : {(vec(b)+vec(c ))xx(vec(c )+vec(a))}.(vec(a)+vec(b))=2[vec(a)vec(b)vec(c )]