Home
Class 12
MATHS
If vectors vec(a)=hat(i)-2hat(j)+hat(k),...

If vectors `vec(a)=hat(i)-2hat(j)+hat(k), vec(b)=-2hat(i)+4hat(j)+5hat(k)` and `vec(c )=hat(i)-6hat(j)-7hat(k)`, then find the value of `|vec(a)+vec(b)+vec(c )|`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \(|\vec{a} + \vec{b} + \vec{c}|\), we will follow these steps: ### Step 1: Write down the vectors Given: \[ \vec{a} = \hat{i} - 2\hat{j} + \hat{k} \] \[ \vec{b} = -2\hat{i} + 4\hat{j} + 5\hat{k} \] \[ \vec{c} = \hat{i} - 6\hat{j} - 7\hat{k} \] ### Step 2: Add the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) We will add the corresponding components of the vectors: - For the \(\hat{i}\) component: \[ 1 + (-2) + 1 = 0 \] - For the \(\hat{j}\) component: \[ -2 + 4 + (-6) = -4 \] - For the \(\hat{k}\) component: \[ 1 + 5 + (-7) = -1 \] Thus, we have: \[ \vec{a} + \vec{b} + \vec{c} = 0\hat{i} - 4\hat{j} - 1\hat{k} \] ### Step 3: Write the resultant vector The resultant vector can be expressed as: \[ \vec{R} = 0\hat{i} - 4\hat{j} - 1\hat{k} \] ### Step 4: Calculate the magnitude of the resultant vector The magnitude of a vector \(\vec{R} = x\hat{i} + y\hat{j} + z\hat{k}\) is given by: \[ |\vec{R}| = \sqrt{x^2 + y^2 + z^2} \] For our resultant vector: - \(x = 0\) - \(y = -4\) - \(z = -1\) Calculating the magnitude: \[ |\vec{R}| = \sqrt{0^2 + (-4)^2 + (-1)^2} = \sqrt{0 + 16 + 1} = \sqrt{17} \] ### Final Answer Thus, the value of \(|\vec{a} + \vec{b} + \vec{c}|\) is: \[ \sqrt{17} \] ---
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Ncert File Question from Ncert Book (Exercise 10.1)|5 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Ncert File Question from Ncert Book (Exercise 10.2)|19 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Objective Type Questions (C. True/False Questions)|10 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

Find the sum of the vectors vec(a)=hat(i)-2hat(j)+hat(k), vec(b)=-2hat(i)+4hat(j)+5hat(k) , and vec(c )=hat(i)-6hat(j)-7hat(k) .

If vec(a)=4hat(i)+hat(j)-hat(k) , vec(b)=3hat(i)-2hat(j)+2hat(k) , then the value of |vec(a)-vec(b)-vec(c)| is :-

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

If vec(a)=2hat(i)+3hat(j)+hat(k), vec(b)=hat(i)-2hat(j)+hat(k) and vec(c )=-3hat(i)+hat(j)+2hat(k) , find [vec(a)vec(b)vec(c )] .

If vec(a)=7hat(i)-2hat(j)+3hat(k), vec(b)=hat(i)-hat(j)+2hat(k), vec(c )=2hat(i)+8hat(j) , then find vec(a).(vec(b)xx vec(c )) and (vec(b)xx vec(c )).vec(a) .

If vec(a)=(2hat(i)-hat(j)+hat(k)), vec(b)=(hat(i)-3hat(j)-5hat(k)) and vec(c)=(3hat(i)-4hat(j)-hat(k)) , find [vec(a)vec(b)vec(c)] and interpret the result.

Find the sum of the vectors vec(a)=(hat(i)-3hat(k)), vec(b)=(2hat(j)-hat(k)) and vec(c)=(2hat(i)-3hat(j)+2hat(k)) .

If vec(a) = hat(i) + hat(j) + 2 hat(k) and vec(b) = 3 hat(i) + 2 hat(j) - hat(k) , find the value of (vec(a) + 3 vec(b)) . ( 2 vec(a) - vec(b)) .

If vec(a)=2hat(i)-hat(j)+2hat(k) and vec(b)=6hat(i)+2hat(j)+3hat(k) , find a unit vector parallel to vec(a)+vec(b) .

Find the sum of vectors vec a=hat i-2hat j+hat k,vec b=-2hat i+4hat j+5hat k and vec c=hat i-6hat j-7hat k

MODERN PUBLICATION-VECTOR ALGEBRA -Objective Type Questions (D. Very Short Answers Type Questions)
  1. Write a unit vector in the direction of vec a=3 hat i-2 hat j+6 hat k...

    Text Solution

    |

  2. Write a unit vector in the direction of the sum of the vectors : vec(a...

    Text Solution

    |

  3. If vectors vec(a)=hat(i)-2hat(j)+hat(k), vec(b)=-2hat(i)+4hat(j)+5hat(...

    Text Solution

    |

  4. If vec a= hat i+2 hat j-3 hat k\ a n d\ vec b=2 hat i+4 hat j+9 hat ...

    Text Solution

    |

  5. For what value of 'a' the vectors : 2hat(i)-3hat(j)+4hat(k) and a h...

    Text Solution

    |

  6. Write a unit vector in the direction of vec P Q ,\ w h e r e\ P\ a n ...

    Text Solution

    |

  7. In a triangle OAC, if B is the mid point of side AC and vec O A= vec ...

    Text Solution

    |

  8. Find the position vector of the point, which divides the join of point...

    Text Solution

    |

  9. If |vec(a).vec(b)|=|vec(a)xx vec(b)|, find the angle between vec(a) an...

    Text Solution

    |

  10. Obtain the dot product of the vectors : vec(a)=hat(i)-hat(j)+hat(k) ...

    Text Solution

    |

  11. Write the magnitude of the vector vec(a) in terms of dot product.

    Text Solution

    |

  12. Let vec(a)=(2hat(i)+3hat(j)+2 hat(k)) and vec(b)=(hat(i)+2hat(j)+hat(k...

    Text Solution

    |

  13. Evaluate : (3vec(a)-5vec(b)).(2vec(a)+7vec(b)).

    Text Solution

    |

  14. If vec a is a unit vector and (vec x - vec a).(vec x + vec a)=8, then ...

    Text Solution

    |

  15. Find the angle between hat(i)+hat(j)+hat(k) and hat(i)+hat(j)-hat(k).

    Text Solution

    |

  16. Find the angle between vec(a) and vec(b) such that : |vec(a)|=sqrt(2...

    Text Solution

    |

  17. The position vectors of three vectors A, B and C are given to be hat(i...

    Text Solution

    |

  18. Find 'lambda' when the vectors : vec(a)=2hat(i)+lambda hat(j)+hat(k) ...

    Text Solution

    |

  19. If vec(a) and vec(b) are perpendicular vectors, |vec(a)+vec(b)|=3 and ...

    Text Solution

    |

  20. Find the magnitude of each of the two vectors veca and vec b having th...

    Text Solution

    |