Home
Class 12
MATHS
Obtain the dot product of the vectors : ...

Obtain the dot product of the vectors :
`vec(a)=hat(i)-hat(j)+hat(k)` and `vec(b)=hat(i)-hat(k)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the dot product of the vectors \(\vec{a} = \hat{i} - \hat{j} + \hat{k}\) and \(\vec{b} = \hat{i} - \hat{k}\), we can follow these steps: ### Step 1: Identify the components of the vectors The vector \(\vec{a}\) can be expressed in terms of its components: \[ \vec{a} = 1\hat{i} - 1\hat{j} + 1\hat{k} \] So, the components are: - \(x_1 = 1\) (coefficient of \(\hat{i}\)) - \(y_1 = -1\) (coefficient of \(\hat{j}\)) - \(z_1 = 1\) (coefficient of \(\hat{k}\)) For vector \(\vec{b}\): \[ \vec{b} = 1\hat{i} + 0\hat{j} - 1\hat{k} \] The components are: - \(x_2 = 1\) (coefficient of \(\hat{i}\)) - \(y_2 = 0\) (coefficient of \(\hat{j}\)) - \(z_2 = -1\) (coefficient of \(\hat{k}\)) ### Step 2: Apply the formula for the dot product The dot product of two vectors \(\vec{a}\) and \(\vec{b}\) is given by: \[ \vec{a} \cdot \vec{b} = x_1 x_2 + y_1 y_2 + z_1 z_2 \] ### Step 3: Substitute the components into the formula Now substituting the values: \[ \vec{a} \cdot \vec{b} = (1)(1) + (-1)(0) + (1)(-1) \] ### Step 4: Calculate each term Calculating each term: 1. \(1 \cdot 1 = 1\) 2. \(-1 \cdot 0 = 0\) 3. \(1 \cdot -1 = -1\) Now, adding these results together: \[ \vec{a} \cdot \vec{b} = 1 + 0 - 1 \] ### Step 5: Simplify the result \[ \vec{a} \cdot \vec{b} = 1 - 1 = 0 \] ### Final Answer The dot product of the vectors \(\vec{a}\) and \(\vec{b}\) is: \[ \vec{a} \cdot \vec{b} = 0 \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Ncert File Question from Ncert Book (Exercise 10.1)|5 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Ncert File Question from Ncert Book (Exercise 10.2)|19 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Objective Type Questions (C. True/False Questions)|10 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

Find the dot product of vectors vec(a)=2hat(i)-3hat(j)+hat(k), vec(b)=-hat(i)+3hat(j)+hat(k)

Find the dot product of two vectors vec(A)=3hat(i)+2hat(j)-4hat(k) and vec(B)=2hat(i)-3hat(j)-6hat(k) .

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

Find the angle between the vectors : vec(a)=hat(i)+hat(j)-hat(k) " and " vec(b)=hat(i)-hat(j)+hat(k)

a. Prove that the vector vec(A)=3hat(i)-2hat(j)+hat(k) , vec(B)=hat(i)-3hat(j)+5hat(k), and vec(C )=2hat(i)+hat(j)-4hat(k) from a right -angled triangle. b. Determine the unit vector parallel to the cross product of vector vec(A)=3hat(i)-5hat(j)+10hat(k) & =vec(B)=6hat(i)+5hat(j)+2hat(k).

Find the area of the parallelogram whose adjacent sides are represented by the vectors (i) vec(a)=hat(i) + 2 hat(j)+ 3 hat(k) and vec(b)=-3 hat(i)- 2 hat(j) + hat(k) (ii) vec(a)=(3 hat(i)+hat(j) + 4 hat(k)) and vec(b)= ( hat(i)- hat(j) + hat(k)) (iii) vec(a) = 2 hat(i)+ hat(j) +3 hat(k) and vec(b)= hat(i)-hat(j) (iv) vec(b)= 2 hat(i) and vec(b) = 3 hat(j).

Find the angle between the vectors vec(a) and vec(b) , when (i) vec(a)=hat(i)-2hat(j)+3 hat(k) and vec(b)=3hat(i)-2hat(j)+hat(k) (ii) vec(a)=3 hat(i)+hat(j)+2hat(k) and vec(b)=2hat(i)-2hat(j)+4 hat(k) (iii) vec(a)=hat(i)-hat(j) and vec(b)=hat(j)+hat(k) .

Find the unit vector in the direction of vec(a)-vec(b) , where : vec(a)=hat(i)+3hat(j)-hat(k), vec(b)=3hat(i)+2hat(j)+hat(k) .

MODERN PUBLICATION-VECTOR ALGEBRA -Objective Type Questions (D. Very Short Answers Type Questions)
  1. For what value of 'a' the vectors : 2hat(i)-3hat(j)+4hat(k) and a h...

    Text Solution

    |

  2. Write a unit vector in the direction of vec P Q ,\ w h e r e\ P\ a n ...

    Text Solution

    |

  3. In a triangle OAC, if B is the mid point of side AC and vec O A= vec ...

    Text Solution

    |

  4. Find the position vector of the point, which divides the join of point...

    Text Solution

    |

  5. If |vec(a).vec(b)|=|vec(a)xx vec(b)|, find the angle between vec(a) an...

    Text Solution

    |

  6. Obtain the dot product of the vectors : vec(a)=hat(i)-hat(j)+hat(k) ...

    Text Solution

    |

  7. Write the magnitude of the vector vec(a) in terms of dot product.

    Text Solution

    |

  8. Let vec(a)=(2hat(i)+3hat(j)+2 hat(k)) and vec(b)=(hat(i)+2hat(j)+hat(k...

    Text Solution

    |

  9. Evaluate : (3vec(a)-5vec(b)).(2vec(a)+7vec(b)).

    Text Solution

    |

  10. If vec a is a unit vector and (vec x - vec a).(vec x + vec a)=8, then ...

    Text Solution

    |

  11. Find the angle between hat(i)+hat(j)+hat(k) and hat(i)+hat(j)-hat(k).

    Text Solution

    |

  12. Find the angle between vec(a) and vec(b) such that : |vec(a)|=sqrt(2...

    Text Solution

    |

  13. The position vectors of three vectors A, B and C are given to be hat(i...

    Text Solution

    |

  14. Find 'lambda' when the vectors : vec(a)=2hat(i)+lambda hat(j)+hat(k) ...

    Text Solution

    |

  15. If vec(a) and vec(b) are perpendicular vectors, |vec(a)+vec(b)|=3 and ...

    Text Solution

    |

  16. Find the magnitude of each of the two vectors veca and vec b having th...

    Text Solution

    |

  17. Find lambda if (2 hat i+6 hat j+14 hat k)x\ ( hat i-\ lambda hat j+7 h...

    Text Solution

    |

  18. Find a vector of magnitude sqrt(171) which is perpendicular to both of...

    Text Solution

    |

  19. If vec(a)=2hat(i)+3hat(j)+hat(k), vec(b)=hat(i)-2hat(j)+hat(k) and v...

    Text Solution

    |

  20. Find the value of 'lambda' such that the vectors : 3hat(i)+lambda hat(...

    Text Solution

    |