Home
Class 12
MATHS
Evaluate : (3vec(a)-5vec(b)).(2vec(a)+7v...

Evaluate : `(3vec(a)-5vec(b)).(2vec(a)+7vec(b))`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \((3\vec{a} - 5\vec{b}) \cdot (2\vec{a} + 7\vec{b})\), we will use the distributive property of the dot product. Here’s the step-by-step solution: ### Step 1: Expand the expression using the distributive property We can expand the dot product as follows: \[ (3\vec{a} - 5\vec{b}) \cdot (2\vec{a} + 7\vec{b}) = 3\vec{a} \cdot 2\vec{a} + 3\vec{a} \cdot 7\vec{b} - 5\vec{b} \cdot 2\vec{a} - 5\vec{b} \cdot 7\vec{b} \] ### Step 2: Calculate each term Now, we calculate each term separately: 1. **First term**: \[ 3\vec{a} \cdot 2\vec{a} = 6(\vec{a} \cdot \vec{a}) = 6|\vec{a}|^2 \] 2. **Second term**: \[ 3\vec{a} \cdot 7\vec{b} = 21(\vec{a} \cdot \vec{b}) \] 3. **Third term**: \[ -5\vec{b} \cdot 2\vec{a} = -10(\vec{b} \cdot \vec{a}) = -10(\vec{a} \cdot \vec{b}) \] 4. **Fourth term**: \[ -5\vec{b} \cdot 7\vec{b} = -35(\vec{b} \cdot \vec{b}) = -35|\vec{b}|^2 \] ### Step 3: Combine the results Now, we combine all the terms: \[ 6|\vec{a}|^2 + 21(\vec{a} \cdot \vec{b}) - 10(\vec{a} \cdot \vec{b}) - 35|\vec{b}|^2 \] This simplifies to: \[ 6|\vec{a}|^2 + (21 - 10)(\vec{a} \cdot \vec{b}) - 35|\vec{b}|^2 \] \[ = 6|\vec{a}|^2 + 11(\vec{a} \cdot \vec{b}) - 35|\vec{b}|^2 \] ### Final Result Thus, the final result of the expression \((3\vec{a} - 5\vec{b}) \cdot (2\vec{a} + 7\vec{b})\) is: \[ 6|\vec{a}|^2 + 11(\vec{a} \cdot \vec{b}) - 35|\vec{b}|^2 \] ---
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Ncert File Question from Ncert Book (Exercise 10.1)|5 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Ncert File Question from Ncert Book (Exercise 10.2)|19 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Objective Type Questions (C. True/False Questions)|10 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

Evaluate the product (3vec(a)-5vec(b)).(2vec(a)+7vec(b)) .

The vector (vec(a)+3vec(b)) is perpendicular to (7 vec(a)-5vec(b)) and (vec(a)-4vec(b)) is perpendicular to (7vec(a)-2vec(b)) . The angle between vec(a) and vec(b) is :

If |vec a|=2,|vec b|=1 and vec a*vcb=1 then find the value of (3vec a-5vec b)*(2vec a+vec 7vec b)

Evaluate the product (3vec a-5vec b)*(2vec a+7vec b)

If vec(a) and vec(b) are mutually perpendicular unit vectors then (3vec(a)+2vec(b)).(5vec(a)-6vec(b))=?

Show that the points having position vectors (-2vec(a) + 3 vec(b)+5vec(c)),(vec(a)+ 2 vec(b)+ 3 vec(c)) and (7vec(a)- vec(c)) are collinear, whatever be vec(a),vec(b),vec(c).

If vec(a)+vec(b)+vec(c )=0 " and" |vec(a)|=3,|vec(b)|=5, |vec(c )|=7 , then find the value of vec(a),vec(b)+vec(b).vec(c )+vec(c ).vec(a) .

If |vec a|=1=|vec b| and |vec a + vec b|=sqrt3 then evaluate (2 vec a - vec b) * (3 vec a + vec b) .

If vec a and vec b are two vectors,such that |vec a|=2,|vec b|=1 and vec a*vec b=1, then find (3vec a-5vec b)*(2vec a+7vec b)

vec(a)+vec(b)+vec(c)=vec(0) such that |vec(a)|=3, |vec(b)|=5 and |vec(c)|=7 . What is vec (a). vec(b) + vec(b). vec(c) + vec(c). vec (a) equal to ?

MODERN PUBLICATION-VECTOR ALGEBRA -Objective Type Questions (D. Very Short Answers Type Questions)
  1. For what value of 'a' the vectors : 2hat(i)-3hat(j)+4hat(k) and a h...

    Text Solution

    |

  2. Write a unit vector in the direction of vec P Q ,\ w h e r e\ P\ a n ...

    Text Solution

    |

  3. In a triangle OAC, if B is the mid point of side AC and vec O A= vec ...

    Text Solution

    |

  4. Find the position vector of the point, which divides the join of point...

    Text Solution

    |

  5. If |vec(a).vec(b)|=|vec(a)xx vec(b)|, find the angle between vec(a) an...

    Text Solution

    |

  6. Obtain the dot product of the vectors : vec(a)=hat(i)-hat(j)+hat(k) ...

    Text Solution

    |

  7. Write the magnitude of the vector vec(a) in terms of dot product.

    Text Solution

    |

  8. Let vec(a)=(2hat(i)+3hat(j)+2 hat(k)) and vec(b)=(hat(i)+2hat(j)+hat(k...

    Text Solution

    |

  9. Evaluate : (3vec(a)-5vec(b)).(2vec(a)+7vec(b)).

    Text Solution

    |

  10. If vec a is a unit vector and (vec x - vec a).(vec x + vec a)=8, then ...

    Text Solution

    |

  11. Find the angle between hat(i)+hat(j)+hat(k) and hat(i)+hat(j)-hat(k).

    Text Solution

    |

  12. Find the angle between vec(a) and vec(b) such that : |vec(a)|=sqrt(2...

    Text Solution

    |

  13. The position vectors of three vectors A, B and C are given to be hat(i...

    Text Solution

    |

  14. Find 'lambda' when the vectors : vec(a)=2hat(i)+lambda hat(j)+hat(k) ...

    Text Solution

    |

  15. If vec(a) and vec(b) are perpendicular vectors, |vec(a)+vec(b)|=3 and ...

    Text Solution

    |

  16. Find the magnitude of each of the two vectors veca and vec b having th...

    Text Solution

    |

  17. Find lambda if (2 hat i+6 hat j+14 hat k)x\ ( hat i-\ lambda hat j+7 h...

    Text Solution

    |

  18. Find a vector of magnitude sqrt(171) which is perpendicular to both of...

    Text Solution

    |

  19. If vec(a)=2hat(i)+3hat(j)+hat(k), vec(b)=hat(i)-2hat(j)+hat(k) and v...

    Text Solution

    |

  20. Find the value of 'lambda' such that the vectors : 3hat(i)+lambda hat(...

    Text Solution

    |