Home
Class 12
MATHS
The position vectors of three vectors A,...

The position vectors of three vectors A, B and C are given to be `hat(i)+3hat(j)+3hat(k), 4hat(i)+4hat(k)` and `-2hat(i)+4hat(j)+2hat(k)` respectively. Find the angle between `vec(AB)` and `vec(AC)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the angle between the vectors \(\vec{AB}\) and \(\vec{AC}\), we will follow these steps: ### Step 1: Identify the position vectors The position vectors of points A, B, and C are given as: - \(\vec{A} = \hat{i} + 3\hat{j} + 3\hat{k}\) - \(\vec{B} = 4\hat{i} + 0\hat{j} + 4\hat{k}\) - \(\vec{C} = -2\hat{i} + 4\hat{j} + 2\hat{k}\) ### Step 2: Calculate the vectors \(\vec{AB}\) and \(\vec{AC}\) The vector \(\vec{AB}\) is given by: \[ \vec{AB} = \vec{B} - \vec{A} \] Substituting the position vectors: \[ \vec{AB} = (4\hat{i} + 0\hat{j} + 4\hat{k}) - (\hat{i} + 3\hat{j} + 3\hat{k}) \] Calculating this gives: \[ \vec{AB} = (4 - 1)\hat{i} + (0 - 3)\hat{j} + (4 - 3)\hat{k} = 3\hat{i} - 3\hat{j} + 1\hat{k} \] The vector \(\vec{AC}\) is given by: \[ \vec{AC} = \vec{C} - \vec{A} \] Substituting the position vectors: \[ \vec{AC} = (-2\hat{i} + 4\hat{j} + 2\hat{k}) - (\hat{i} + 3\hat{j} + 3\hat{k}) \] Calculating this gives: \[ \vec{AC} = (-2 - 1)\hat{i} + (4 - 3)\hat{j} + (2 - 3)\hat{k} = -3\hat{i} + 1\hat{j} - 1\hat{k} \] ### Step 3: Calculate the dot product \(\vec{AB} \cdot \vec{AC}\) The dot product is given by: \[ \vec{AB} \cdot \vec{AC} = (3\hat{i} - 3\hat{j} + 1\hat{k}) \cdot (-3\hat{i} + 1\hat{j} - 1\hat{k}) \] Calculating this gives: \[ = 3 \cdot (-3) + (-3) \cdot 1 + 1 \cdot (-1) = -9 - 3 - 1 = -13 \] ### Step 4: Calculate the magnitudes of \(\vec{AB}\) and \(\vec{AC}\) The magnitude of \(\vec{AB}\) is: \[ |\vec{AB}| = \sqrt{(3)^2 + (-3)^2 + (1)^2} = \sqrt{9 + 9 + 1} = \sqrt{19} \] The magnitude of \(\vec{AC}\) is: \[ |\vec{AC}| = \sqrt{(-3)^2 + (1)^2 + (-1)^2} = \sqrt{9 + 1 + 1} = \sqrt{11} \] ### Step 5: Use the dot product to find the cosine of the angle Using the formula: \[ \vec{AB} \cdot \vec{AC} = |\vec{AB}| |\vec{AC}| \cos \theta \] Substituting the values we found: \[ -13 = \sqrt{19} \cdot \sqrt{11} \cdot \cos \theta \] Thus, \[ \cos \theta = \frac{-13}{\sqrt{19} \cdot \sqrt{11}} \] ### Step 6: Find the angle \(\theta\) To find \(\theta\), we take the inverse cosine: \[ \theta = \cos^{-1}\left(\frac{-13}{\sqrt{19} \cdot \sqrt{11}}\right) \] ### Final Answer The angle between vectors \(\vec{AB}\) and \(\vec{AC}\) is: \[ \theta = \cos^{-1}\left(\frac{-13}{\sqrt{19} \cdot \sqrt{11}}\right) \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Ncert File Question from Ncert Book (Exercise 10.1)|5 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Ncert File Question from Ncert Book (Exercise 10.2)|19 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Objective Type Questions (C. True/False Questions)|10 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

The position vectors of three points A,B anc C (-4hat(i) +2hat(j) -3hat(k)) (hat(i) +3hat(j) -2hat(k)) "and " (-9hat(i) +hat(j) -4hat(k)) respectively . Show that the points A,B and C are collinear.

vec(A)=2hat(i)+4hat(j)+4hat(k) and vec(B)=4hat(i)+2hat(j)-4hat(k) are two vectors. Find the angles between them.

If position vectors of two points A and B are 3hat(i)- 2hat(j) + hat(k) and 2hat(i) + 4hat(j) - 3hat(k) , respectively then length of vec(AB) is equal to?

The three vector vec(A) = 3hat(i)-2hat(j)+hat(k), vec(B)= hat(i)-3hat(j)+5hat(k) and vec(C )= 2hat(i)+hat(j)-4hat(k) from

Given the vectors vec(A)=2hat(i)+3hat(j)-hat(k) vec(B)=3hat(i)-2hat(j)-2hat(k) & " " vec(c)=phat(i)+phat(j)+2phat(k) Find the angle between (vec(A)-vec(B)) & vec(C)

Show that the vectors hat(i)-3hat(j)+4hat(k),2hat(i)-hat(j)+2hat(k)and 4hat(i)-7hat(j)+10hat(k) are coplanar.

If the position vectors of points A and B are 3hat(i)-2hat(j)+hat(k) and 2hat(i)+4hat(j)-3hat(k) respectively, then what is the length of vec(AB) ?

Three vectors vec(A) = 2hat(i) - hat(j) + hat(k), vec(B) = hat(i) - 3hat(j) - 5hat(k) , and vec(C ) = 3hat(i) - 4hat(j) - 4hat(k) are sides of an :

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

Find th esine of angles between vectors vec(a)= 2hat(i) - 6hat(j) - 3hat(k), and vec(b) = 4hat(i) + 3hat(j)- hat(k) ?

MODERN PUBLICATION-VECTOR ALGEBRA -Objective Type Questions (D. Very Short Answers Type Questions)
  1. For what value of 'a' the vectors : 2hat(i)-3hat(j)+4hat(k) and a h...

    Text Solution

    |

  2. Write a unit vector in the direction of vec P Q ,\ w h e r e\ P\ a n ...

    Text Solution

    |

  3. In a triangle OAC, if B is the mid point of side AC and vec O A= vec ...

    Text Solution

    |

  4. Find the position vector of the point, which divides the join of point...

    Text Solution

    |

  5. If |vec(a).vec(b)|=|vec(a)xx vec(b)|, find the angle between vec(a) an...

    Text Solution

    |

  6. Obtain the dot product of the vectors : vec(a)=hat(i)-hat(j)+hat(k) ...

    Text Solution

    |

  7. Write the magnitude of the vector vec(a) in terms of dot product.

    Text Solution

    |

  8. Let vec(a)=(2hat(i)+3hat(j)+2 hat(k)) and vec(b)=(hat(i)+2hat(j)+hat(k...

    Text Solution

    |

  9. Evaluate : (3vec(a)-5vec(b)).(2vec(a)+7vec(b)).

    Text Solution

    |

  10. If vec a is a unit vector and (vec x - vec a).(vec x + vec a)=8, then ...

    Text Solution

    |

  11. Find the angle between hat(i)+hat(j)+hat(k) and hat(i)+hat(j)-hat(k).

    Text Solution

    |

  12. Find the angle between vec(a) and vec(b) such that : |vec(a)|=sqrt(2...

    Text Solution

    |

  13. The position vectors of three vectors A, B and C are given to be hat(i...

    Text Solution

    |

  14. Find 'lambda' when the vectors : vec(a)=2hat(i)+lambda hat(j)+hat(k) ...

    Text Solution

    |

  15. If vec(a) and vec(b) are perpendicular vectors, |vec(a)+vec(b)|=3 and ...

    Text Solution

    |

  16. Find the magnitude of each of the two vectors veca and vec b having th...

    Text Solution

    |

  17. Find lambda if (2 hat i+6 hat j+14 hat k)x\ ( hat i-\ lambda hat j+7 h...

    Text Solution

    |

  18. Find a vector of magnitude sqrt(171) which is perpendicular to both of...

    Text Solution

    |

  19. If vec(a)=2hat(i)+3hat(j)+hat(k), vec(b)=hat(i)-2hat(j)+hat(k) and v...

    Text Solution

    |

  20. Find the value of 'lambda' such that the vectors : 3hat(i)+lambda hat(...

    Text Solution

    |