Home
Class 12
MATHS
If vec(a)=2hat(i)+3hat(j)+hat(k), vec(b)...

If `vec(a)=2hat(i)+3hat(j)+hat(k), vec(b)=hat(i)-2hat(j)+hat(k)` and `vec(c )=-3hat(i)+hat(j)+2hat(k)`, find `[vec(a)vec(b)vec(c )]`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the scalar triple product \([ \vec{a} \, \vec{b} \, \vec{c} ]\), we can use the determinant of a matrix formed by the components of the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\). Given: \[ \vec{a} = 2\hat{i} + 3\hat{j} + \hat{k} \] \[ \vec{b} = \hat{i} - 2\hat{j} + \hat{k} \] \[ \vec{c} = -3\hat{i} + \hat{j} + 2\hat{k} \] ### Step 1: Write the vectors in component form The components of the vectors are: - \(\vec{a} = (2, 3, 1)\) - \(\vec{b} = (1, -2, 1)\) - \(\vec{c} = (-3, 1, 2)\) ### Step 2: Form the matrix We form a matrix using the components of the vectors: \[ \begin{vmatrix} 2 & 3 & 1 \\ 1 & -2 & 1 \\ -3 & 1 & 2 \end{vmatrix} \] ### Step 3: Calculate the determinant To find the determinant, we can use the formula for a \(3 \times 3\) matrix: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix: - \(a = 2\), \(b = 3\), \(c = 1\) - \(d = 1\), \(e = -2\), \(f = 1\) - \(g = -3\), \(h = 1\), \(i = 2\) Calculating the determinant: \[ = 2((-2)(2) - (1)(1)) - 3((1)(2) - (1)(-3)) + 1((1)(1) - (-2)(-3)) \] \[ = 2(-4 - 1) - 3(2 + 3) + 1(1 - 6) \] \[ = 2(-5) - 3(5) + 1(-5) \] \[ = -10 - 15 - 5 \] \[ = -30 \] ### Final Answer Thus, the scalar triple product \([ \vec{a} \, \vec{b} \, \vec{c} ] = -30\). ---
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Ncert File Question from Ncert Book (Exercise 10.1)|5 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Ncert File Question from Ncert Book (Exercise 10.2)|19 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Objective Type Questions (C. True/False Questions)|10 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

If vec(a)=(2hat(i)-hat(j)+hat(k)), vec(b)=(hat(i)-3hat(j)-5hat(k)) and vec(c)=(3hat(i)-4hat(j)-hat(k)) , find [vec(a)vec(b)vec(c)] and interpret the result.

If vec(a)=2hat(i)+hat(j)+3hat(k),vec(b)=-hat(i)+2hat(j)+hat(k) , and vec(c)=-3hat(i)+hat(j)+2hat(k) , find [hat(a)hat(b)hat(c)] .

If vec(a)=7hat(i)-2hat(j)+3hat(k), vec(b)=hat(i)-hat(j)+2hat(k), vec(c )=2hat(i)+8hat(j) , then find vec(a).(vec(b)xx vec(c )) and (vec(b)xx vec(c )).vec(a) .

If vec(a)=3hat(i)-2hat(j)+hat(k), vec(b)=2hat(i)-4 hat(j)-3 hat(k) , find |vec(a)-2 vec(b)| .

verify that vec(a) xx (vec(b)+ vec(c))=(vec(a) xx vec(b))+(vec(a) xx vec(c)) , "when" (i) vec(a)= hat(i)- hat(j)-3 hat(k), vec(b)= 4 hat(i)-3 hat(j) + hat(k) and vec(c)= 2 hat(i) - hat(j) + 2 hat(k) (ii) vec(a)= 4 hat(i)-hat(j)+hat(k), vec(b)= hat(i)+hat(j)+ hat(k) and vec(c)= hat(i)- hat(j)+hat(k).

If vec(a)=2hat(i)+2 hat(j)+3hat(k), vec(b)=-hat(i)+2hat(j)+hat(k) and vec(c)=3hat(i)+hat(j) are three vectors such that vec(a)+t vec(b) is perpendicular to vec(c) , then what is t equal to ?

If vectors vec(a)=hat(i)-2hat(j)+hat(k), vec(b)=-2hat(i)+4hat(j)+5hat(k) and vec(c )=hat(i)-6hat(j)-7hat(k) , then find the value of |vec(a)+vec(b)+vec(c )| .

vec(A)=hat(j)-2hat(i)+3hat(k) " , "vec(B)= hat(i)+2hat(j)+2hat(k) find vec(A).vec(B)

Find [vec(a)vec(b)vec(c)] , when (i) vec(a)=2hat(i)+hat(j)+3hat(k), vec(b)=-hat(i)+2hat(j)+hat(k) and vec(c)=3hat(i)+hat(j)+2hat(k) (ii) vec(a)=2hat(i)-3hat(j)+4hat(k), vec(b)=hat(i)+2hat(j)-hat(k) and vec(c)=3hat(i)-hat(j)+2hat(k) (iii) vec(a) = 2 hat(i)-3hat(j), vec(b)=hat(i)+hat(j)-hat(k) and vec(c)=3hat(i)-hat(k)

Find the value of lambda for which the vectors vec(a), vec(b), vec(c) are coplanar, where (i) vec(a)=(2hat(i)-hat(j)+hat(k)), vec(b) = (hat(i)+2hat(j)+3hat(k) ) and vec(c)=(3 hat(i)+lambda hat(j) + 5 hat (k)) (ii) vec(a)lambda hat(i)-10 hat(j)-5k^(2), vec(b) =-7hat(i)-5hat(j) and vec(c)= hat(i)--4hat(j)-3hat(k) (iii) vec(a)=hat(i)-hat(j)+hat(k), vec(b)= 2hat( i) + hat(j)-hat(k) and vec(c)= lambda hat(i) - hat(j) + lambda hat(k)

MODERN PUBLICATION-VECTOR ALGEBRA -Objective Type Questions (D. Very Short Answers Type Questions)
  1. For what value of 'a' the vectors : 2hat(i)-3hat(j)+4hat(k) and a h...

    Text Solution

    |

  2. Write a unit vector in the direction of vec P Q ,\ w h e r e\ P\ a n ...

    Text Solution

    |

  3. In a triangle OAC, if B is the mid point of side AC and vec O A= vec ...

    Text Solution

    |

  4. Find the position vector of the point, which divides the join of point...

    Text Solution

    |

  5. If |vec(a).vec(b)|=|vec(a)xx vec(b)|, find the angle between vec(a) an...

    Text Solution

    |

  6. Obtain the dot product of the vectors : vec(a)=hat(i)-hat(j)+hat(k) ...

    Text Solution

    |

  7. Write the magnitude of the vector vec(a) in terms of dot product.

    Text Solution

    |

  8. Let vec(a)=(2hat(i)+3hat(j)+2 hat(k)) and vec(b)=(hat(i)+2hat(j)+hat(k...

    Text Solution

    |

  9. Evaluate : (3vec(a)-5vec(b)).(2vec(a)+7vec(b)).

    Text Solution

    |

  10. If vec a is a unit vector and (vec x - vec a).(vec x + vec a)=8, then ...

    Text Solution

    |

  11. Find the angle between hat(i)+hat(j)+hat(k) and hat(i)+hat(j)-hat(k).

    Text Solution

    |

  12. Find the angle between vec(a) and vec(b) such that : |vec(a)|=sqrt(2...

    Text Solution

    |

  13. The position vectors of three vectors A, B and C are given to be hat(i...

    Text Solution

    |

  14. Find 'lambda' when the vectors : vec(a)=2hat(i)+lambda hat(j)+hat(k) ...

    Text Solution

    |

  15. If vec(a) and vec(b) are perpendicular vectors, |vec(a)+vec(b)|=3 and ...

    Text Solution

    |

  16. Find the magnitude of each of the two vectors veca and vec b having th...

    Text Solution

    |

  17. Find lambda if (2 hat i+6 hat j+14 hat k)x\ ( hat i-\ lambda hat j+7 h...

    Text Solution

    |

  18. Find a vector of magnitude sqrt(171) which is perpendicular to both of...

    Text Solution

    |

  19. If vec(a)=2hat(i)+3hat(j)+hat(k), vec(b)=hat(i)-2hat(j)+hat(k) and v...

    Text Solution

    |

  20. Find the value of 'lambda' such that the vectors : 3hat(i)+lambda hat(...

    Text Solution

    |