Home
Class 12
MATHS
Find the value of 'lambda' such that the...

Find the value of `'lambda'` such that the vectors : `3hat(i)+lambda hat(j)+5hat(k), hat(i)+2hat(j)-3hat(k)` and `2hat(i)-hat(j)+hat(k)` are coplanar.

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \lambda \) such that the vectors \( \mathbf{a} = 3\hat{i} + \lambda \hat{j} + 5\hat{k} \), \( \mathbf{b} = \hat{i} + 2\hat{j} - 3\hat{k} \), and \( \mathbf{c} = 2\hat{i} - \hat{j} + \hat{k} \) are coplanar, we can use the condition that the scalar triple product of the vectors is zero. This can be expressed using the determinant of a matrix formed by the components of the vectors. ### Step-by-step Solution: 1. **Write the vectors in component form:** \[ \mathbf{a} = \begin{pmatrix} 3 \\ \lambda \\ 5 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix}, \quad \mathbf{c} = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} \] 2. **Set up the determinant:** The vectors are coplanar if the determinant of the matrix formed by these vectors is zero: \[ \begin{vmatrix} 3 & \lambda & 5 \\ 1 & 2 & -3 \\ 2 & -1 & 1 \end{vmatrix} = 0 \] 3. **Calculate the determinant:** Using the determinant formula for a 3x3 matrix: \[ \text{Det} = 3 \begin{vmatrix} 2 & -3 \\ -1 & 1 \end{vmatrix} - \lambda \begin{vmatrix} 1 & -3 \\ 2 & 1 \end{vmatrix} + 5 \begin{vmatrix} 1 & 2 \\ 2 & -1 \end{vmatrix} \] Now calculate each of the 2x2 determinants: - \( \begin{vmatrix} 2 & -3 \\ -1 & 1 \end{vmatrix} = (2)(1) - (-3)(-1) = 2 - 3 = -1 \) - \( \begin{vmatrix} 1 & -3 \\ 2 & 1 \end{vmatrix} = (1)(1) - (-3)(2) = 1 + 6 = 7 \) - \( \begin{vmatrix} 1 & 2 \\ 2 & -1 \end{vmatrix} = (1)(-1) - (2)(2) = -1 - 4 = -5 \) Substitute these values back into the determinant: \[ \text{Det} = 3(-1) - \lambda(7) + 5(-5) \] \[ \text{Det} = -3 - 7\lambda - 25 \] \[ \text{Det} = -28 - 7\lambda \] 4. **Set the determinant to zero:** \[ -28 - 7\lambda = 0 \] 5. **Solve for \( \lambda \):** \[ -7\lambda = 28 \] \[ \lambda = -4 \] ### Final Answer: The value of \( \lambda \) such that the vectors are coplanar is \( \lambda = -4 \).
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Ncert File Question from Ncert Book (Exercise 10.1)|5 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Ncert File Question from Ncert Book (Exercise 10.2)|19 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Objective Type Questions (C. True/False Questions)|10 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

Find the value of 'lambda' such that vectors : 3hat(i)+lambda hat(j)+5hat(k), hat(i)+2hat(j)-3hat(k) and 2hat(i)-hat(j)+hat(k) are coplanar.

The value of 'lambda' such that the vectors : 3hat(i)+lambdahat(j)+5hat(k), hat(i)+2hat(j)-3hat(k) and 2hat(i)-hat(j)+hat(k) are coplanar is __________.

Find the value of lambda so that the vectors vec(a)=2hat(i)-3hat(j)+hat(k),vec(b)=hat(i)+2hat(j)-3hat(k) a nd vec(c)=hat(j)+lambda hat(k) are coplanar.

What is the value of lamda for which the vectors hat(i) - hat(j) + hat(k), 2hat(i) + hat(j)- hat(k) and lamda hat(i) - hat(j)+ lamda (k) are coplanar

Find 'lambda' if the vectors : hat(i)-hat(j)+hat(k), 3hat(i)+hat(j)+2hat(k) and hat(i)+lambda hat(j)-3hat(k) are coplanar.

What is the value of lambda for which the vectors hat(i)-hat(j)+hat(k), 2 hat(i)+hat(j)-hat(k) and lambda hat(i)-hat(j)+lambda hat(k) are co-planar?

Show that the vectors hat(i)-hat(j)-6hat(k),hat(i)-3hat(j)+4hat(k)and2hat(i)-5hat(j)+3hat(k) are coplanar.

Show that the vectors hat(i)-3hat(j)+4hat(k),2hat(i)-hat(j)+2hat(k)and 4hat(i)-7hat(j)+10hat(k) are coplanar.

What is the value of m, if the vector 2 hat(i) - hat(j) + hat(k), hat(i) + 2hat(j)- 3hat(k) and 3hat(i) + m hat(j)+ 5hat(k) are coplanar?

If the vectors hat(i)-2hat(j)+hat(k),ahat(i)+5hat(j)-3hat(k)and5hat(i)-9hat(j)+4hat(k) are coplanar, then the value of a is

MODERN PUBLICATION-VECTOR ALGEBRA -Objective Type Questions (D. Very Short Answers Type Questions)
  1. For what value of 'a' the vectors : 2hat(i)-3hat(j)+4hat(k) and a h...

    Text Solution

    |

  2. Write a unit vector in the direction of vec P Q ,\ w h e r e\ P\ a n ...

    Text Solution

    |

  3. In a triangle OAC, if B is the mid point of side AC and vec O A= vec ...

    Text Solution

    |

  4. Find the position vector of the point, which divides the join of point...

    Text Solution

    |

  5. If |vec(a).vec(b)|=|vec(a)xx vec(b)|, find the angle between vec(a) an...

    Text Solution

    |

  6. Obtain the dot product of the vectors : vec(a)=hat(i)-hat(j)+hat(k) ...

    Text Solution

    |

  7. Write the magnitude of the vector vec(a) in terms of dot product.

    Text Solution

    |

  8. Let vec(a)=(2hat(i)+3hat(j)+2 hat(k)) and vec(b)=(hat(i)+2hat(j)+hat(k...

    Text Solution

    |

  9. Evaluate : (3vec(a)-5vec(b)).(2vec(a)+7vec(b)).

    Text Solution

    |

  10. If vec a is a unit vector and (vec x - vec a).(vec x + vec a)=8, then ...

    Text Solution

    |

  11. Find the angle between hat(i)+hat(j)+hat(k) and hat(i)+hat(j)-hat(k).

    Text Solution

    |

  12. Find the angle between vec(a) and vec(b) such that : |vec(a)|=sqrt(2...

    Text Solution

    |

  13. The position vectors of three vectors A, B and C are given to be hat(i...

    Text Solution

    |

  14. Find 'lambda' when the vectors : vec(a)=2hat(i)+lambda hat(j)+hat(k) ...

    Text Solution

    |

  15. If vec(a) and vec(b) are perpendicular vectors, |vec(a)+vec(b)|=3 and ...

    Text Solution

    |

  16. Find the magnitude of each of the two vectors veca and vec b having th...

    Text Solution

    |

  17. Find lambda if (2 hat i+6 hat j+14 hat k)x\ ( hat i-\ lambda hat j+7 h...

    Text Solution

    |

  18. Find a vector of magnitude sqrt(171) which is perpendicular to both of...

    Text Solution

    |

  19. If vec(a)=2hat(i)+3hat(j)+hat(k), vec(b)=hat(i)-2hat(j)+hat(k) and v...

    Text Solution

    |

  20. Find the value of 'lambda' such that the vectors : 3hat(i)+lambda hat(...

    Text Solution

    |