Home
Class 12
MATHS
Show that the vectors : vec(a)=hat(i...

Show that the vectors :
`vec(a)=hat(i)-2hat(j)+3hat(k), vec(b)=-2hat(i)+3hat(j)-4hat(k)` and `vec(c )=hat(i)-3hat(j)+5hat(k)` are coplanar.

Text Solution

AI Generated Solution

The correct Answer is:
To show that the vectors \(\vec{a} = \hat{i} - 2\hat{j} + 3\hat{k}\), \(\vec{b} = -2\hat{i} + 3\hat{j} - 4\hat{k}\), and \(\vec{c} = \hat{i} - 3\hat{j} + 5\hat{k}\) are coplanar, we can use the scalar triple product. The vectors are coplanar if the scalar triple product \(\vec{a} \cdot (\vec{b} \times \vec{c}) = 0\). ### Step 1: Calculate the cross product \(\vec{b} \times \vec{c}\) The cross product of two vectors \(\vec{b}\) and \(\vec{c}\) can be calculated using the determinant of a matrix formed by the unit vectors \(\hat{i}, \hat{j}, \hat{k}\) and the components of \(\vec{b}\) and \(\vec{c}\): \[ \vec{b} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -2 & 3 & -4 \\ 1 & -3 & 5 \end{vmatrix} \] ### Step 2: Calculate the determinant Using the determinant formula, we can expand it as follows: \[ \vec{b} \times \vec{c} = \hat{i} \begin{vmatrix} 3 & -4 \\ -3 & 5 \end{vmatrix} - \hat{j} \begin{vmatrix} -2 & -4 \\ 1 & 5 \end{vmatrix} + \hat{k} \begin{vmatrix} -2 & 3 \\ 1 & -3 \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. For \(\hat{i}\): \[ \begin{vmatrix} 3 & -4 \\ -3 & 5 \end{vmatrix} = (3)(5) - (-4)(-3) = 15 - 12 = 3 \] 2. For \(\hat{j}\): \[ \begin{vmatrix} -2 & -4 \\ 1 & 5 \end{vmatrix} = (-2)(5) - (-4)(1) = -10 + 4 = -6 \] 3. For \(\hat{k}\): \[ \begin{vmatrix} -2 & 3 \\ 1 & -3 \end{vmatrix} = (-2)(-3) - (3)(1) = 6 - 3 = 3 \] Putting it all together: \[ \vec{b} \times \vec{c} = 3\hat{i} + 6\hat{j} + 3\hat{k} \] ### Step 3: Calculate the dot product \(\vec{a} \cdot (\vec{b} \times \vec{c})\) Now we will calculate the dot product of \(\vec{a}\) and \(\vec{b} \times \vec{c}\): \[ \vec{a} \cdot (\vec{b} \times \vec{c}) = (1)(3) + (-2)(6) + (3)(3) \] Calculating this gives: \[ = 3 - 12 + 9 = 0 \] ### Conclusion Since \(\vec{a} \cdot (\vec{b} \times \vec{c}) = 0\), the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) are coplanar. ---
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Miscellaneous Exercise on Chapter 10|19 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Exercise|3 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Ncert File Question from Ncert Book (Exercise 10.4)|12 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

The three vector vec(A) = 3hat(i)-2hat(j)+hat(k), vec(B)= hat(i)-3hat(j)+5hat(k) and vec(C )= 2hat(i)+hat(j)-4hat(k) from

Show that the vectors vec(a)=(hat(i)+3hat(j)+hat(k)), vec(b)=(2hat(i)-hat(j)-hat(k)) and vec(c)=(7hat(j)+3hat(k)) are parallel to the same plane. {HINT : Show that [vec(a)vec(b)vec(c)]=0 }

Show that the vectors vec(a), vec(b), vec(c) are coplanar, when (i) vec(a)=hat(i)-2hat(j)+3hat(k), vec(b) = -2hat(i)+3hat(j)-4hat(k) and vec(c)=hat(i)-3hat(j)+5hat(k) (ii) vec(a)=hat(i)+3hat(j)+hat(k), vec(b)=2hat(i)-hat(j)-hat(k)and vec(c)=7hat(j)+3hat(k) (iii) vec(a)=2hat(i)-hat(j)+2hat(k), vec(b)=hat(i)+2hat(j)-3hat(k) and vec(c)=3hat(i)-4hat(j)+7hat(k)

a. Prove that the vector vec(A)=3hat(i)-2hat(j)+hat(k) , vec(B)=hat(i)-3hat(j)+5hat(k), and vec(C )=2hat(i)+hat(j)-4hat(k) from a right -angled triangle. b. Determine the unit vector parallel to the cross product of vector vec(A)=3hat(i)-5hat(j)+10hat(k) & =vec(B)=6hat(i)+5hat(j)+2hat(k).

Find [vec(a)vec(b)vec(c )] if vec(a)=vec(i)-2hat(j)+3hat(k), vec(b)=2hat(i)-3hat(j)+hat(k) and vec(c )=3hat(i)+hat(j)-2hat(k) .

Three vectors vec(A) = 2hat(i) - hat(j) + hat(k), vec(B) = hat(i) - 3hat(j) - 5hat(k) , and vec(C ) = 3hat(i) - 4hat(j) - 4hat(k) are sides of an :

Find the sum of the vectors vec(a)=(hat(i)-3hat(k)), vec(b)=(2hat(j)-hat(k)) and vec(c)=(2hat(i)-3hat(j)+2hat(k)) .

Find the volume of the parallelepiped whose edges are represented by the vectors vec(a)=(2hat(i)-3hat(j)+4hat(k)), vec(b)=(hat(i)+2hat(j)-hat(k)) and vec(c)=(3hat(i)-hat(j)+2hat(k)) .

For what value of 'lambda' are the following vectors coplanar ? vec(a)=2hat(i)-4hat(j)+5hat(k), vec(b)=hat(i)-lambda hat(j)+hat(k) and vec(c )= 3hat(i)+2hat(j)-5hat(k) .