Home
Class 12
MATHS
Find 'lambda' if the vectors : hat(i)...

Find `'lambda'` if the vectors :
`hat(i)-hat(j)+hat(k), 3hat(i)+hat(j)+2hat(k)` and `hat(i)+lambda hat(j)-3hat(k)` are coplanar.

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \lambda \) such that the vectors \( \mathbf{A} = \hat{i} - \hat{j} + \hat{k} \), \( \mathbf{B} = 3\hat{i} + \hat{j} + 2\hat{k} \), and \( \mathbf{C} = \hat{i} + \lambda \hat{j} - 3\hat{k} \) are coplanar, we can use the condition that the scalar triple product of the vectors is zero. ### Step-by-Step Solution: 1. **Identify the Vectors**: \[ \mathbf{A} = \hat{i} - \hat{j} + \hat{k} \quad \text{(Coefficients: 1, -1, 1)} \] \[ \mathbf{B} = 3\hat{i} + \hat{j} + 2\hat{k} \quad \text{(Coefficients: 3, 1, 2)} \] \[ \mathbf{C} = \hat{i} + \lambda \hat{j} - 3\hat{k} \quad \text{(Coefficients: 1, \lambda, -3)} \] 2. **Set Up the Determinant**: The vectors are coplanar if the determinant of the matrix formed by their coefficients is zero: \[ \begin{vmatrix} 1 & -1 & 1 \\ 3 & 1 & 2 \\ 1 & \lambda & -3 \end{vmatrix} = 0 \] 3. **Calculate the Determinant**: Expanding the determinant: \[ = 1 \cdot \begin{vmatrix} 1 & 2 \\ \lambda & -3 \end{vmatrix} - (-1) \cdot \begin{vmatrix} 3 & 2 \\ 1 & -3 \end{vmatrix} + 1 \cdot \begin{vmatrix} 3 & 1 \\ 1 & \lambda \end{vmatrix} \] Now calculate each of the 2x2 determinants: - First determinant: \[ = 1 \cdot (-3 - 2\lambda) = -3 - 2\lambda \] - Second determinant: \[ = 3 \cdot (-3) - 2 \cdot 1 = -9 - 2 = -11 \] - Third determinant: \[ = 3\lambda - 1 \] Putting it all together: \[ -3 - 2\lambda + 11 + 3\lambda - 1 = 0 \] 4. **Simplify the Equation**: Combine like terms: \[ (3\lambda - 2\lambda) + (-3 + 11 - 1) = 0 \] \[ \lambda + 7 = 0 \] 5. **Solve for \( \lambda \)**: \[ \lambda = -7 \] ### Final Answer: The value of \( \lambda \) is \( -7 \).
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Miscellaneous Exercise on Chapter 10|19 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Exercise|3 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Ncert File Question from Ncert Book (Exercise 10.4)|12 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

Find the value of 'lambda' such that vectors : 3hat(i)+lambda hat(j)+5hat(k), hat(i)+2hat(j)-3hat(k) and 2hat(i)-hat(j)+hat(k) are coplanar.

Find the value of 'lambda' such that the vectors : 3hat(i)+lambda hat(j)+5hat(k), hat(i)+2hat(j)-3hat(k) and 2hat(i)-hat(j)+hat(k) are coplanar.

Show that the vectors hat(i)-3hat(j)+4hat(k),2hat(i)-hat(j)+2hat(k)and 4hat(i)-7hat(j)+10hat(k) are coplanar.

What is the value of lamda for which the vectors hat(i) - hat(j) + hat(k), 2hat(i) + hat(j)- hat(k) and lamda hat(i) - hat(j)+ lamda (k) are coplanar

The value of 'lambda' such that the vectors : 3hat(i)+lambdahat(j)+5hat(k), hat(i)+2hat(j)-3hat(k) and 2hat(i)-hat(j)+hat(k) are coplanar is __________.

What is the value of lambda for which the vectors hat(i)-hat(j)+hat(k), 2 hat(i)+hat(j)-hat(k) and lambda hat(i)-hat(j)+lambda hat(k) are co-planar?

Show that the vectors hat(i)-hat(j)-6hat(k),hat(i)-3hat(j)+4hat(k)and2hat(i)-5hat(j)+3hat(k) are coplanar.

The vectors lamdahat(i)+hat(j)+2hat(k),hat(i)+lamdahat(j)-hat(k) and 2hat(i)-hat(j)+lamda hat(k) are coplanar, if

If three vectors 2hat(i)-hat(j)-hat(k), hat(i)+2hat(j)-3hat(k) and 3hat(i)+lambda hat(j)+5hat(k) are coplanar, then the value of lambda is