Home
Class 12
MATHS
If vec a , vec b , vec c are three ...

If ` vec a , vec b , vec c` are three non coplanar vectors such that ` vec a.vec a= vec d vec b= vec d. vec c=0` , then show that ` vec d` is the null vector.

A

`vec(d)=vec(1)`.

B

`vec(d)=vec(0)`.

C

`vec(d)=vec(2)`.

D

`vec(d)=vec(3)`.

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise COMPETITION FILE|16 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise CHAPTER TEST 10|12 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Exercise|3 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

If vec a,vec b,vec c are three non coplanar vectors such that vec a.vec a*vec a=vec dvec b=vec d*vec c=0 then show that vec d is the null vector.

If vec a , vec b , vec c are three non coplanar vectors such that vec ddot vec a= vec ddot vec b= vec ddot vec c=0, then show that d is the null vector.

veca , vec b , vec c are non-coplanar vectors and x vec a + y vec b + z vec c = vec 0 then

If vec a, vec b, vec c are non-coplanar vectors and vec v * vec a = vec v * vec b = vec v * vec c = 0, then vec v must be a

If vec a, vec b , vec c are three non- coplanar vectors such that vec a + vec b + vec c = alpha vec d and vec b +vec c + vec d = beta vec a, " then " vec a + vec b + vec c + vec d to equal to

If vec a, vec b, vec c are three non-coplanar vectors such that vec a + vec b + vec c = alphavec d and vec b + vec c + vec d = betavec a then vec a + vec b + vec c + vec d is equal to

vec a,vec b,vec c are the three coplanar vectors and if vec r*vec a=vec r*vec b=vec r*vec c=0 then prove that vec r is a zero vector

If vec a, vec b and vec c are non coplaner vectors such that vec b xxvec c = vec a, vec c xxvec a = vec b and vec a xxvec b = vec c then | vec a + vec b + vec c | =

If vec a , vec ba n d vec c are three non coplanar vectors, then prove that vec d=( vec adot vec d)/([ vec a vec b vec c])( vec bxx vec c)+( vec bdot vec d)/([ vec a vec b vec c])( vec cxx vec a)+( vec cdot vec d)/([ vec a vec b vec c])( vec axx vec b)

If vec a,vec b and vec c be any three vectors then show that vec a+(vec b+vec c)=(vec a+vec b)+vec c