Home
Class 12
MATHS
The vectors vec a and vec b are not...

The vectors ` vec a` and ` vec b` are not perpendicular and ` vec c` and ` vec d` are two vectors satisfying : ` vec b"" vec c"" vec b"" vec d""="" vec adot vec d=0` . Then the vector ` vec d` is equal to :

A

`vec(b)-((vec(b).vec(c ))/(vec(a).vec(b)))vec(c )`

B

`vec(c )+((vec(a).vec(c ))/(vec(a).vec(b)))vec(b)`

C

`vec(b)+((vec(b).vec(c ))/(vec(a).vec(b)))vec(c )`

D

`vec(c )-((vec(a).vec(c ))/(vec(a).vec(b)))vec(b)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise CHAPTER TEST 10|12 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Revision Exercise|10 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

The vectors vec a and vec b are not perpendicular and vec c and vec d are two vectors satisfying : vec b""xxvec c""= vec b"" xxvec d"",vec a * vec d=0 . Then the vector vec d is equal to : (1) vec b-(( vec bdot vec c)/( vec adot vec d)) vec c (2) vec c+(( vec adot vec c)/( vec adot vec b)) vec b (3) vec b+(( vec bdot vec c)/( vec adot vec b)) vec c (4) vec c-(( vec adot vec c)/( vec adot vec b)) vec b

The vectors vec a,vec b,vec c,vec d are coplanar then

If vec a\ a n d\ vec b are unit vectors then write the value of | vec axx vec b|^2+( vec adot vec b)^2dot

If vec a a n d vec b are two vectors such that vec adot vec b=6, | vec a|=3 a n d | vec b|=4. Write the projection of vec a on vec bdot

If vec a , vec b , vec c are three non coplanar vectors such that vec ddot vec a= vec ddot vec b= vec ddot vec c=0, then show that d is the null vector.

If vec a and vec b are two vectors such that |vec a+vec b|=|vec a|, then prove that vector 2vec a+vec b is perpendicular to vector vec b

[vec a, vec b + vec c, vec d] = [vec a, vec b, vec d] + [vec a, vec c, vec d]

If vec a, vec b, vec c and vec d are unit vectors such that (vec a xxvec b) * (vec c xxvec d) = 1 and vec a * vec c = (1) / (2)

If vectors vec a , vec b ,a n d vec c are coplanar, show that | vec a vec b vec c vec adot vec a vec adot vec b vec adot vec c vec bdot vec a vec bdot vec b vec bdot vec c|=odot

If vec a,vec b,vec c are three non coplanar vectors such that vec a.vec a*vec a=vec dvec b=vec d*vec c=0 then show that vec d is the null vector.