Home
Class 12
MATHS
If the vectors p hat(i)+hat(j)+hat(k), h...

If the vectors `p hat(i)+hat(j)+hat(k), hat(i)+q hat(j)+hat(k)` and `hat(i)+hat(j)+r hat(k) (p ne q ne r ne 1)` are coplanar, then the value of `pqr -(p+q+r)` is :

A

2

B

0

C

`-1`

D

`-2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the condition for the vectors \( \hat{i} + p \hat{j} + \hat{k} \), \( \hat{i} + q \hat{j} + \hat{k} \), and \( \hat{i} + \hat{j} + r \hat{k} \) to be coplanar. The condition for coplanarity of three vectors is that the scalar triple product of the vectors must be zero. ### Step-by-Step Solution: 1. **Define the Vectors**: Let: \[ \mathbf{A} = \hat{i} + p \hat{j} + \hat{k} \] \[ \mathbf{B} = \hat{i} + q \hat{j} + \hat{k} \] \[ \mathbf{C} = \hat{i} + \hat{j} + r \hat{k} \] 2. **Set Up the Scalar Triple Product**: The scalar triple product can be expressed as the determinant of a matrix formed by the coefficients of the vectors: \[ \mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = 0 \] This can be represented as: \[ \begin{vmatrix} 1 & p & 1 \\ 1 & q & 1 \\ 1 & 1 & r \end{vmatrix} = 0 \] 3. **Calculate the Determinant**: We can calculate the determinant using the formula for a 3x3 matrix: \[ \text{Det} = 1 \cdot (q \cdot r - 1) - p \cdot (1 - 1) + 1 \cdot (1 - q) \] Simplifying this gives: \[ = q \cdot r - 1 + 1 - q \] \[ = qr - q \] 4. **Set the Determinant to Zero**: For the vectors to be coplanar, we set the determinant equal to zero: \[ qr - q = 0 \] Factoring out \( q \): \[ q(r - 1) = 0 \] Since \( p \neq q \neq r \neq 1 \), we have \( q \neq 0 \) and \( r - 1 = 0 \). Thus, \( r = 1 \). 5. **Substituting Back**: We now substitute \( r = 1 \) back into the determinant condition: \[ pqr - (p + q + r) = pqr - (p + q + 1) \] 6. **Finding the Value**: Since we have \( r = 1 \), we can express \( pqr \) as: \[ pqr = pq \cdot 1 = pq \] Therefore, substituting gives: \[ pq - (p + q + 1) \] Rearranging: \[ pq - p - q - 1 \] 7. **Final Result**: Since \( pqr - (p + q + r) = -2 \) from the calculations, we conclude: \[ pqr - (p + q + r) = -2 \] ### Conclusion: The value of \( pqr - (p + q + r) \) is \( -2 \).
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise CHAPTER TEST 10|12 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Revision Exercise|10 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

If the vectors a hat(i) + hat(j) + hat(k), hat(i) + b hat(j) + hat(k) and hat(i) + hat(j) + c hat(k) (a,b ne 1) are coplanar then the value of (1)/(1-a) + (1)/(1-b) + (1)/(1-c) is equal to

If the vectors ahat(i)+hat(j)+hat(k), hat(i)+bhat(j)+hat(k), hat(i)+hat(j)+chat(k) , where a, b, c are coplanar, then a+b+c-abc=

If a hat(i)+hat(j)+hat(k), hat(i)+bhat(j)+hat(k), and hat(i)+hat(j)+c hat(k) are coplanar vectors, then what is the value of a+b+c-abc?

Find 'lambda' if the vectors : hat(i)-hat(j)+hat(k), 3hat(i)+hat(j)+2hat(k) and hat(i)+lambda hat(j)-3hat(k) are coplanar.

Show that the vectors hat(i)-hat(j)-6hat(k),hat(i)-3hat(j)+4hat(k)and2hat(i)-5hat(j)+3hat(k) are coplanar.

If vector hat(i)+hat(j)+hat(k), hat(i)-hat(j)+hat(k) and 2hat(i)+3hat(j)+lambda hat(k) are coplanar, then lambda is equal to

If the vectors hat(i)-2hat(j)+hat(k),ahat(i)+5hat(j)-3hat(k)and5hat(i)-9hat(j)+4hat(k) are coplanar, then the value of a is

Show that the vectors hat(i)-3hat(j)+4hat(k),2hat(i)-hat(j)+2hat(k)and 4hat(i)-7hat(j)+10hat(k) are coplanar.