Home
Class 12
MATHS
Let vec(a) and vec(b) he two unit vecto...

Let `vec(a)` and `vec(b)` he two unit vectors. If the vectors : `vec(c )=vec(a)+2vec(b)` and `vec(d)=5vec(a)-4vec(b)` are perpendicular to eqach other, then the angle between `vec(a)` and `vec(b)` is :

A

`(pi)/(6)`

B

`(pi)/(2)`

C

`(pi)/(3)`

D

`(pi)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the angle between the two unit vectors \( \vec{a} \) and \( \vec{b} \) given that the vectors \( \vec{c} = \vec{a} + 2\vec{b} \) and \( \vec{d} = 5\vec{a} - 4\vec{b} \) are perpendicular to each other. ### Step-by-step Solution: 1. **Understanding the Condition of Perpendicularity**: Since \( \vec{c} \) and \( \vec{d} \) are perpendicular, their dot product must be zero: \[ \vec{c} \cdot \vec{d} = 0 \] 2. **Substituting the Expressions for \( \vec{c} \) and \( \vec{d} \)**: Substitute \( \vec{c} \) and \( \vec{d} \) into the dot product: \[ (\vec{a} + 2\vec{b}) \cdot (5\vec{a} - 4\vec{b}) = 0 \] 3. **Expanding the Dot Product**: Using the distributive property of the dot product: \[ \vec{a} \cdot (5\vec{a}) + \vec{a} \cdot (-4\vec{b}) + (2\vec{b}) \cdot (5\vec{a}) + (2\vec{b}) \cdot (-4\vec{b}) = 0 \] This simplifies to: \[ 5(\vec{a} \cdot \vec{a}) - 4(\vec{a} \cdot \vec{b}) + 10(\vec{b} \cdot \vec{a}) - 8(\vec{b} \cdot \vec{b}) = 0 \] 4. **Using Properties of Unit Vectors**: Since \( \vec{a} \) and \( \vec{b} \) are unit vectors: \[ \vec{a} \cdot \vec{a} = 1 \quad \text{and} \quad \vec{b} \cdot \vec{b} = 1 \] Therefore, we can substitute: \[ 5(1) - 4(\vec{a} \cdot \vec{b}) + 10(\vec{a} \cdot \vec{b}) - 8(1) = 0 \] 5. **Combining Like Terms**: This simplifies to: \[ 5 - 8 + 6(\vec{a} \cdot \vec{b}) = 0 \] \[ -3 + 6(\vec{a} \cdot \vec{b}) = 0 \] 6. **Solving for \( \vec{a} \cdot \vec{b} \)**: Rearranging gives: \[ 6(\vec{a} \cdot \vec{b}) = 3 \] \[ \vec{a} \cdot \vec{b} = \frac{1}{2} \] 7. **Relating Dot Product to Angle**: The dot product of two vectors is given by: \[ \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta \] Since both \( \vec{a} \) and \( \vec{b} \) are unit vectors, we have: \[ \vec{a} \cdot \vec{b} = 1 \cdot 1 \cdot \cos \theta = \cos \theta \] Therefore: \[ \cos \theta = \frac{1}{2} \] 8. **Finding the Angle \( \theta \)**: The angle \( \theta \) for which \( \cos \theta = \frac{1}{2} \) is: \[ \theta = 60^\circ \quad \text{or} \quad \theta = \frac{\pi}{3} \text{ radians} \] ### Final Answer: The angle between \( \vec{a} \) and \( \vec{b} \) is \( 60^\circ \) or \( \frac{\pi}{3} \) radians. ---
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise CHAPTER TEST 10|12 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Revision Exercise|10 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

vec(a) and vec(b) are unit vectors and angle between them is pi/k . If vec(a)+2vec(b) and 5vec(a)-4vec(b) are perpendicular to each other then find the integer value of k.

If vec(a) and vec(b) are two unit vectors, then the vector (vec(a) + vec(b)) xx (vec(a) xx vec(b)) is parallel to

The vector (vec(a)+3vec(b)) is perpendicular to (7 vec(a)-5vec(b)) and (vec(a)-4vec(b)) is perpendicular to (7vec(a)-2vec(b)) . The angle between vec(a) and vec(b) is :

The vector (vec a+3vec b) is perpendicular to (7vec a-5vec b) and (vec a-4vec b) is perpendicular to (7vec a-2vec b). The angle between vec a and vec b is :

The vector (vec a+3vec b) is perpendicular to (7vec a-5vec b) and (vec a-4vec b) is perpendicular to (7vec a-2vec b). The angle between vec a and vec b is:

If |vec a+vec b|=|vec a-vec b|, show that the vectors vec a and vec b are perpendicular to each other.

Two vectors vec(a) and vec(b) are such that |vec(a)+vec(b)|=|vec(a)-vec(b)| . What is the angle between vec(a) and vec(b) ?

Let vec(a) and vec(b) be two unit vectors and theta is the angle between them. Then vec(a)+vec(b) is a unit vector if :

If vec a,vec b, and vec c are mutually perpendicular vectors of equal magnitudes,then find the angle between vectors vec a and vec a+vec b+vec c

Let vec(a), vec(b) and vec(c) be three vectors such that vec(a) + vec(b) + vec(c) = 0 and |vec(a)|=10, |vec(b)|=6 and |vec(c) |=14 . What is the angle between vec(a) and vec(b) ?