Home
Class 12
MATHS
If [ vec axx vec b"" vec bxx vec c"" vec...

If `[ vec axx vec b"" vec bxx vec c"" vec cxx vec a]=lambda[ vec a vec b vec c]^2` , then `lambda` is equal to

A

3

B

0

C

1

D

2

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise CHAPTER TEST 10|12 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Revision Exercise|10 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

[vec a + vec b, vec b + vec c, vec c + vec a] = 2 [vec a, vec b, vec c]

If vec r=x_1( vec axx vec b)+x_2( vec bxx vec a)+x_3( vec cxx vec d) and 4[ vec a vec b vec c]=1, then x_1+x_2+x_3 is equal to (A) 1/2 vecr .( vec a+ vec b+ vec c) (B) 1/4 vecr.( vec a+ vec b+ vec c) (C) 2 vecr.( vec a+ vec b+ vec c) (D) 4 vecr.( vec a+ vec b+ vec c)

[vec a+vec b,vec b+vec c,vec c+vec a]=2[vec a,vec b,vec c]

If vec a xxvec b = vec b xxvec c = vec c xxvec a, then vec a + vec b + vec c is equal to

If quad vec a+2vec b+3vec c=vec 0 and vec a xxvec b+vec b xxvec c+vec c xxvec a=lambda(vec b xxvec c) then what is the value of lambda?

The length of the perpendicular form the origin to the plane passing through the point a and containing the line vec r= vec b+lambda vec c is a. ([ vec a vec b vec c])/(| vec axx vec b+ vec bxx vec c+ vec cxx vec a|) b. ([ vec a vec b vec c])/(| vec axx vec b+ vec bxx vec c|) c. ([ vec a vec b vec c])/(| vec bxx vec c+ vec cxx vec a|) d. ([ vec a vec b vec c])/(| vec cxx vec a+ vec axx vec b|)

If vec a=3hat i+hat j and vec b=hat i+2hat j+hat k and vec c satisfy the conditions vec a times vec c=vec b+lambda vec a and vec a*vec c=0 then lambda is equal to

If the vectors vec a , vec b ,a n d vec c form the sides B C ,C Aa n dA B , respectively, of triangle A B C ,t h e n vec adot vec b+ vec bdot vec c+ vec cdot vec a=0 b. vec axx vec b= vec bxx vec c= vec cxx vec a c. vec adot vec b= vec bdot vec c= vec cdot vec a d. vec axx vec b+ vec bxx vec c+ vec cxx vec a=0

vec d = lambda (vec a xxvec b) + mu (vec b xxvec c) + nu (vec c xxvec a) and [vec aquad vec bquad vec c] = (1) / (8), then lambda + mu + nu =

[[vec a + vec b-vec c, vec b + vec c-vec a, vec c + vec a-vec b is equal to