Home
Class 12
MATHS
Let vec(alpha)=3hat(i)+hat(j), vec(beta)...

Let `vec(alpha)=3hat(i)+hat(j), vec(beta)=2hat(i)-hat(j)+3hat(k)` and `vec(beta)=vec(beta)_(1)-vec(beta)_(2)`, such that `vec(beta)_(1)` is parallel to `vec(alpha)` and `vec(beta)_(2)` is perpendicular to `alpha`. Find `vec(beta)_(1)xx vec(beta)_(2)`.

A

`(1)/(2)(hat(i)-9hat(j)+8hat(k))`

B

`(1)/(2)(hat(i)-3hat(j)+4hat(k))`

C

`(1)/(2)(-3hat(i)+9hat(j)+10 hat(k))`

D

`(3)/(2)(3hat(i)+9hat(j)+10hat(k))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the vectors \(\vec{\beta}_1\) and \(\vec{\beta}_2\) such that \(\vec{\beta} = \vec{\beta}_1 - \vec{\beta}_2\), where \(\vec{\beta}_1\) is parallel to \(\vec{\alpha}\) and \(\vec{\beta}_2\) is perpendicular to \(\vec{\alpha}\). Finally, we will compute the cross product \(\vec{\beta}_1 \times \vec{\beta}_2\). ### Step-by-Step Solution: 1. **Identify the vectors**: \[ \vec{\alpha} = 3\hat{i} + \hat{j} \] \[ \vec{\beta} = 2\hat{i} - \hat{j} + 3\hat{k} \] 2. **Express \(\vec{\beta}_1\)**: Since \(\vec{\beta}_1\) is parallel to \(\vec{\alpha}\), we can express it as: \[ \vec{\beta}_1 = \lambda \vec{\alpha} = \lambda (3\hat{i} + \hat{j}) = 3\lambda \hat{i} + \lambda \hat{j} \] 3. **Express \(\vec{\beta}_2\)**: From the equation \(\vec{\beta} = \vec{\beta}_1 - \vec{\beta}_2\), we can express \(\vec{\beta}_2\) as: \[ \vec{\beta}_2 = \vec{\beta}_1 - \vec{\beta} = (3\lambda \hat{i} + \lambda \hat{j}) - (2\hat{i} - \hat{j} + 3\hat{k}) \] Simplifying this gives: \[ \vec{\beta}_2 = (3\lambda - 2)\hat{i} + (\lambda + 1)\hat{j} - 3\hat{k} \] 4. **Set up the perpendicularity condition**: Since \(\vec{\beta}_2\) is perpendicular to \(\vec{\alpha}\), we have: \[ \vec{\beta}_2 \cdot \vec{\alpha} = 0 \] This gives: \[ (3\lambda - 2) \cdot 3 + (\lambda + 1) \cdot 1 = 0 \] Expanding this results in: \[ 9\lambda - 6 + \lambda + 1 = 0 \implies 10\lambda - 5 = 0 \implies \lambda = \frac{1}{2} \] 5. **Substitute \(\lambda\) back into \(\vec{\beta}_1\) and \(\vec{\beta}_2\)**: \[ \vec{\beta}_1 = 3\left(\frac{1}{2}\right)\hat{i} + \left(\frac{1}{2}\right)\hat{j} = \frac{3}{2}\hat{i} + \frac{1}{2}\hat{j} \] \[ \vec{\beta}_2 = (3\left(\frac{1}{2}\right) - 2)\hat{i} + \left(\frac{1}{2} + 1\right)\hat{j} - 3\hat{k} = \left(\frac{3}{2} - 2\right)\hat{i} + \left(\frac{1}{2} + 1\right)\hat{j} - 3\hat{k} \] Simplifying \(\vec{\beta}_2\): \[ \vec{\beta}_2 = -\frac{1}{2}\hat{i} + \frac{3}{2}\hat{j} - 3\hat{k} \] 6. **Calculate the cross product \(\vec{\beta}_1 \times \vec{\beta}_2\)**: Using the determinant method: \[ \vec{\beta}_1 \times \vec{\beta}_2 = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{3}{2} & \frac{1}{2} & 0 \\ -\frac{1}{2} & \frac{3}{2} & -3 \end{vmatrix} \] Expanding this determinant: \[ = \hat{i} \left(\frac{1}{2} \cdot (-3) - 0 \cdot \frac{3}{2}\right) - \hat{j} \left(\frac{3}{2} \cdot (-3) - 0 \cdot -\frac{1}{2}\right) + \hat{k} \left(\frac{3}{2} \cdot \frac{3}{2} - \frac{1}{2} \cdot -\frac{1}{2}\right) \] \[ = -\frac{3}{2}\hat{i} + \frac{9}{2}\hat{j} + \left(\frac{9}{4} + \frac{1}{4}\right)\hat{k} \] \[ = -\frac{3}{2}\hat{i} + \frac{9}{2}\hat{j} + \frac{10}{4}\hat{k} = -\frac{3}{2}\hat{i} + \frac{9}{2}\hat{j} + \frac{5}{2}\hat{k} \] 7. **Final result**: The cross product is: \[ \vec{\beta}_1 \times \vec{\beta}_2 = \frac{1}{2} \left(-3\hat{i} + 9\hat{j} + 5\hat{k}\right) \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise CHAPTER TEST 10|12 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Revision Exercise|10 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

Let hat(alpha) = 3 hat(i)+hat(j) and hat(beta)= 2 hat(i)-hat(j)+3hat(k) . If vec(beta)=vec(beta)_(1)-vec(beta)_(2) , where vec(beta)_(1) is parallel to vec(alpha) and vec(beta)_(2) is perpendicular to vec(alpha) then vec(beta)_(1)xx vec(beta)_(2) is equal to :

If vec(a)=3hat(i)-2hat(j)+hat(k), vec(b)=2hat(i)-4 hat(j)-3 hat(k) , find |vec(a)-2 vec(b)| .

If vec alpha=3hat i+4hat j+5hat k and vec beta=2hat i+hat j-4hat k then express vec beta in the form vec beta_(1)+vec beta_(2), where vec beta_(1) is parallel to vec alpha and vec beta is perpendicular to vec alpha.

If with reference to a right handed system of mutually perpendicular unit vectors hat i,hat j,hat k we have vec alpha=3hat i-hat j, and vec beta=2hat i+hat j-3hat k Express vec beta in the form vec beta=vec beta_(1)+vec beta_(2), where vec beta_(1) is parallel to vec alpha and vec beta_(2) is perpendicular to vec alpha .

vec alpha=3hat i+4hat j+5hat k and vec beta=2hat i+hat j-4hat k then express vec beta in the form of vec beta=vec beta_(1)+vec beta_(2) where vec beta_(1) is parallel to vec alpha and vec beta_(2) is perpendicular to vec alpha .

Let vec(alpha)=hat(i) +2 hat(j) - hat(k), vec(beta) = 2 hat(i) - hat(j) + 3 hat(k) and vec(lambda)=2hat(i) + hat(j) + 6 hat(k) be three vectors. If vec(alpha) and vec(beta) are both perpendicular to the vector vec(delta) and vec(delta).vec(lambda)=10 , then what is the magnitude of vec(delta) ?

If vec(a)=2hat(i)-3hat(j)-hat(k), vec(b)=hat(i)+4hat(j)-2hat(k) , then what is (vec(a)+vec(b))xx(vec(a)-vec(b)) equal to ?

If vec(a)=4hat(i)+hat(j)-hat(k) , vec(b)=3hat(i)-2hat(j)+2hat(k) , then the value of |vec(a)-vec(b)-vec(c)| is :-

If vec(a)=hat(i)-2hat(j)+5hat(k) and vec(b)=2hat(i)+hat(j)-3hat(k) then what is (vec(b)-vec(a)). (3vec(a)+vec(b)) equal to ?

If vec(a)= hat(i) - 2hat(j) + 5hat(k), vec(b)= 2hat(i) +hat(j)- 3hat(k) then what is (vec(a)- vec(b)).(3 vec(a) +vec(b)) equal to ?