Home
Class 12
MATHS
Find the shortest distance between the l...

Find the shortest distance between the lines:
`vec(r) = hat(i) + 2 hat(j) - 3 hat(k) + lambda (3 hat(i) - 4 hat(j) - hat(k))`
and `vec(r) = 2 hat(i) - hat(j) + hat(k) + mu (hat(i) + hat(j) + 5 hat(k))`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the shortest distance between the two given lines, we can use the formula for the distance \( D \) between two skew lines represented in vector form. The formula is: \[ D = \frac{|(\vec{C} - \vec{A}) \cdot (\vec{B} \times \vec{D})|}{|\vec{B} \times \vec{D}|} \] where: - \( \vec{A} \) and \( \vec{B} \) are points and direction vectors of the first line, - \( \vec{C} \) and \( \vec{D} \) are points and direction vectors of the second line. ### Step 1: Identify the points and direction vectors From the given lines: 1. Line 1: \[ \vec{r_1} = \hat{i} + 2\hat{j} - 3\hat{k} + \lambda(3\hat{i} - 4\hat{j} - \hat{k}) \] Here, \( \vec{A} = \hat{i} + 2\hat{j} - 3\hat{k} \) and \( \vec{B} = 3\hat{i} - 4\hat{j} - \hat{k} \). 2. Line 2: \[ \vec{r_2} = 2\hat{i} - \hat{j} + \hat{k} + \mu(\hat{i} + \hat{j} + 5\hat{k}) \] Here, \( \vec{C} = 2\hat{i} - \hat{j} + \hat{k} \) and \( \vec{D} = \hat{i} + \hat{j} + 5\hat{k} \). ### Step 2: Calculate \( \vec{C} - \vec{A} \) \[ \vec{C} - \vec{A} = (2\hat{i} - \hat{j} + \hat{k}) - (\hat{i} + 2\hat{j} - 3\hat{k}) \] \[ = (2 - 1)\hat{i} + (-1 - 2)\hat{j} + (1 + 3)\hat{k} \] \[ = \hat{i} - 3\hat{j} + 4\hat{k} \] ### Step 3: Calculate \( \vec{B} \times \vec{D} \) To find \( \vec{B} \times \vec{D} \): \[ \vec{B} = 3\hat{i} - 4\hat{j} - \hat{k}, \quad \vec{D} = \hat{i} + \hat{j} + 5\hat{k} \] Using the determinant to calculate the cross product: \[ \vec{B} \times \vec{D} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -4 & -1 \\ 1 & 1 & 5 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} -4 & -1 \\ 1 & 5 \end{vmatrix} - \hat{j} \begin{vmatrix} 3 & -1 \\ 1 & 5 \end{vmatrix} + \hat{k} \begin{vmatrix} 3 & -4 \\ 1 & 1 \end{vmatrix} \] \[ = \hat{i}((-4)(5) - (-1)(1)) - \hat{j}((3)(5) - (-1)(1)) + \hat{k}((3)(1) - (-4)(1)) \] \[ = \hat{i}(-20 + 1) - \hat{j}(15 + 1) + \hat{k}(3 + 4) \] \[ = -19\hat{i} - 16\hat{j} + 7\hat{k} \] ### Step 4: Calculate the magnitude \( |\vec{B} \times \vec{D}| \) \[ |\vec{B} \times \vec{D}| = \sqrt{(-19)^2 + (-16)^2 + 7^2} \] \[ = \sqrt{361 + 256 + 49} = \sqrt{666} \] ### Step 5: Calculate the dot product \( (\vec{C} - \vec{A}) \cdot (\vec{B} \times \vec{D}) \) \[ (\vec{C} - \vec{A}) \cdot (\vec{B} \times \vec{D}) = (\hat{i} - 3\hat{j} + 4\hat{k}) \cdot (-19\hat{i} - 16\hat{j} + 7\hat{k}) \] \[ = (1)(-19) + (-3)(-16) + (4)(7) \] \[ = -19 + 48 + 28 = 57 \] ### Step 6: Calculate the shortest distance \( D \) \[ D = \frac{|(\vec{C} - \vec{A}) \cdot (\vec{B} \times \vec{D})|}{|\vec{B} \times \vec{D}|} \] \[ = \frac{|57|}{\sqrt{666}} = \frac{57}{\sqrt{666}} \] Thus, the shortest distance between the two lines is: \[ D = \frac{57}{\sqrt{666}} \]
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise EXAMPLE|18 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise EXERCISE 11 (A) (SHORT ANSWER TYPE QUESTIONS )|7 Videos
  • RELATIONS AND FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (1)|12 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise CHAPTER TEST 10|12 Videos

Similar Questions

Explore conceptually related problems

Find the shortest distance between the lines : vec(r) = (4hat(i) - hat(j)) + lambda(hat(i) + 2hat(j) - 3hat(k)) and vec(r) = (hat(i) - hat(j) + 2hat(k)) + mu (2hat(i) + 4hat(j) - 5hat(k))

Find the shortest distance and the vector equation of the line of shortest distance between the lines given by: vec(r) = (3 hat(i) + 8 hat(j) + 3 hat(k) ) + lambda (3 hat(i) - hat(j) + hat(k)) and vec(r) = (-3 hat(i) - 7 hat(j) + 6 hat(k)) + mu (-3 hat(i) + 2 hat(j) + 4 hat(k)) .

Find the equation in vector and cartesian form of the line passing through the point : (2,-1, 3) and perpendicular to the lines : vec(r) = (hat(i) + hat(j) - hat(k)) + lambda (2 hat(i) - 2 hat(j) + hat(k)) and vec(r) = (2 hat(i) - hat(j) - 3 hat(k) ) + mu (hat(i) + 2 hat(j) + 2 hat(k)) .

(A ) Find the vector and cartesian equations of the line through the point (5,2,-4) and which is parallel to the vector 3 hat(i) + 2 hat(j) - 8 hat(k) . (b) Find the equation of a line passing through the point P(2, -1, 3) and perpendicular to the lines : vec(r) = (hat(i) + hat(j) - hat(k) ) + lambda (2 hat(i) - 2 hat(j) + hat(k)) and vec(r) = (2 hat(i) - hat(j) - 3 hat(k) ) + mu (hat(i) + 2 hat(j) + 2 hat(k)) .

Find the distance between the lines L_(1) and L_(2) given by : vec(r) = hat(i) + 2 hat(j) - 4 hat(k) + lambda (2 hat(i) + 3 hat(j) + 6 hat(k)) and vec(r) = 2 hat(i) + 3 hat(j) - 5 hat(k) + mu (2 hat(i) + 3 hat(j) + 6 hat(k)) .

Find the vector and cartesan equation of the plane passing through the poin (1,2,-4) and parallel to the lines. vec(r ) = hat(i) + 2 hat(j) - 4 hat(k) + lambda (2 hat(i) + 3 hat(j) + 6 hat(k)) and vec(r) = hat(i) - 3 hat(j) + 5 hat(k) + mu (hat(i) + hat(j) - hat(k)) .

Show that the lines vec(r) =(hat(i) +2hat(j) +hat(k)) +lambda (hat(i)-hat(j)+hat(k)) " and " vec(r ) =(hat(i) +hat(j) -hat(k)) + mu (hat(i)- hat(j) + 2hat(k)) Do not intersect .

Find the point of intersection of the line : vec(r) = (hat(i) + 2 hat(j) + 3 hat(k) ) + lambda (2 hat(i) + hat(j) + 2 hat(k)) and the plane vec(r). (2 hat(i) - 6 hat(j) + 3 hat(k) ) + 5 = 0.