Home
Class 12
MATHS
Find the distance between the lines L(1)...

Find the distance between the lines `L_(1) and L_(2)` given by :
`vec(r) = hat(i) + 2 hat(j) - 4 hat(k) + lambda (2 hat(i) + 3 hat(j) + 6 hat(k))`
and `vec(r) = 2 hat(i) + 3 hat(j) - 5 hat(k) + mu (2 hat(i) + 3 hat(j) + 6 hat(k))`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the distance between the two given lines \( L_1 \) and \( L_2 \), we can follow these steps: ### Step 1: Identify the lines and their components The lines are given in vector form as: - \( L_1: \vec{r} = \hat{i} + 2\hat{j} - 4\hat{k} + \lambda(2\hat{i} + 3\hat{j} + 6\hat{k}) \) - \( L_2: \vec{r} = 2\hat{i} + 3\hat{j} - 5\hat{k} + \mu(2\hat{i} + 3\hat{j} + 6\hat{k}) \) From this, we can identify: - Point \( A \) on \( L_1 \): \( \vec{a} = \hat{i} + 2\hat{j} - 4\hat{k} \) - Point \( B \) on \( L_2 \): \( \vec{b} = 2\hat{i} + 3\hat{j} - 5\hat{k} \) - Direction vector for both lines: \( \vec{b} = 2\hat{i} + 3\hat{j} + 6\hat{k} \) ### Step 2: Check if the lines are parallel Since both lines have the same direction vector \( \vec{b} = 2\hat{i} + 3\hat{j} + 6\hat{k} \), we conclude that \( L_1 \) and \( L_2 \) are parallel. ### Step 3: Calculate the vector connecting points A and B To find the distance between the two parallel lines, we need to calculate the vector \( \vec{c} - \vec{a} \): \[ \vec{c} - \vec{a} = \vec{b} - \vec{a} = (2 - 1)\hat{i} + (3 - 2)\hat{j} + (-5 + 4)\hat{k} = \hat{i} + \hat{j} - \hat{k} \] ### Step 4: Use the formula for the distance between parallel lines The distance \( d \) between two parallel lines can be calculated using the formula: \[ d = \frac{|(\vec{c} - \vec{a}) \cdot (\vec{b})|}{|\vec{b}|} \] Where \( \vec{b} \) is the direction vector. ### Step 5: Calculate the cross product We need to calculate the cross product \( (\vec{c} - \vec{a}) \times \vec{b} \): \[ \vec{c} - \vec{a} = \hat{i} + \hat{j} - \hat{k} \] \[ \vec{b} = 2\hat{i} + 3\hat{j} + 6\hat{k} \] Using the determinant to find the cross product: \[ \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & -1 \\ 2 & 3 & 6 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i}(1 \cdot 6 - (-1) \cdot 3) - \hat{j}(1 \cdot 6 - (-1) \cdot 2) + \hat{k}(1 \cdot 3 - 1 \cdot 2) \] \[ = \hat{i}(6 + 3) - \hat{j}(6 + 2) + \hat{k}(3 - 2) \] \[ = 9\hat{i} - 8\hat{j} + 1\hat{k} \] ### Step 6: Calculate the magnitude of the cross product Now we find the magnitude of the cross product: \[ |\vec{c} - \vec{a} \times \vec{b}| = \sqrt{9^2 + (-8)^2 + 1^2} = \sqrt{81 + 64 + 1} = \sqrt{146} \] ### Step 7: Calculate the magnitude of the direction vector Next, we calculate the magnitude of the direction vector \( \vec{b} \): \[ |\vec{b}| = \sqrt{2^2 + 3^2 + 6^2} = \sqrt{4 + 9 + 36} = \sqrt{49} = 7 \] ### Step 8: Calculate the distance Finally, we can find the distance \( d \): \[ d = \frac{|\vec{c} - \vec{a} \times \vec{b}|}{|\vec{b}|} = \frac{\sqrt{146}}{7} \] ### Conclusion The distance between the lines \( L_1 \) and \( L_2 \) is: \[ d = \frac{\sqrt{146}}{7} \]
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise EXAMPLE|18 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise EXERCISE 11 (A) (SHORT ANSWER TYPE QUESTIONS )|7 Videos
  • RELATIONS AND FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (1)|12 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise CHAPTER TEST 10|12 Videos

Similar Questions

Explore conceptually related problems

Find the shortest distance and the vector equation of the line of shortest distance between the lines given by: vec(r) = (3 hat(i) + 8 hat(j) + 3 hat(k) ) + lambda (3 hat(i) - hat(j) + hat(k)) and vec(r) = (-3 hat(i) - 7 hat(j) + 6 hat(k)) + mu (-3 hat(i) + 2 hat(j) + 4 hat(k)) .

Find the vector and cartesan equation of the plane passing through the poin (1,2,-4) and parallel to the lines. vec(r ) = hat(i) + 2 hat(j) - 4 hat(k) + lambda (2 hat(i) + 3 hat(j) + 6 hat(k)) and vec(r) = hat(i) - 3 hat(j) + 5 hat(k) + mu (hat(i) + hat(j) - hat(k)) .

Find the shortest distance between the lines: vec(r) = hat(i) + 2 hat(j) - 3 hat(k) + lambda (3 hat(i) - 4 hat(j) - hat(k)) and vec(r) = 2 hat(i) - hat(j) + hat(k) + mu (hat(i) + hat(j) + 5 hat(k)) .

Find the shortest distance between the lines L_(1) " and " L_(2) given by vec( r )=hat(i) +hat(j) +lambda(2hat(i)-hat(j)+hat(k)) " and " vec(r )=2hat(i) +hat(j)-hat(k) +mu (4hat(i) -2hat(j) +2hat(k))

Find the distance between the parallel lines L_(1) " and " L_(2) whose vector equations are vec(r ) =(hat(i) +2hat(j) +3hat(k)) + lambda (hat(i)-hat(j) +hat(k)) " and " (2hat(i) -hat(j) -hat(k)) + mu (hat(i) -hat(j) + hat(k))

Find the equation in vector and cartesian form of the line passing through the point : (2,-1, 3) and perpendicular to the lines : vec(r) = (hat(i) + hat(j) - hat(k)) + lambda (2 hat(i) - 2 hat(j) + hat(k)) and vec(r) = (2 hat(i) - hat(j) - 3 hat(k) ) + mu (hat(i) + 2 hat(j) + 2 hat(k)) .

(A ) Find the vector and cartesian equations of the line through the point (5,2,-4) and which is parallel to the vector 3 hat(i) + 2 hat(j) - 8 hat(k) . (b) Find the equation of a line passing through the point P(2, -1, 3) and perpendicular to the lines : vec(r) = (hat(i) + hat(j) - hat(k) ) + lambda (2 hat(i) - 2 hat(j) + hat(k)) and vec(r) = (2 hat(i) - hat(j) - 3 hat(k) ) + mu (hat(i) + 2 hat(j) + 2 hat(k)) .

Find the angle between the following pairs of lines : (i) vec(r) = 3 hat(i) + 2 hat(j) - 4 hat(k) + lambda (hat(i) + 2 hat(j) + 2 hat(k) ) . vec(r) = 5 hat(j) - 2 hat(k) + mu ( 3 hat(i) + 2 hat(j) + 6 hat(k)) (ii) vec(r) = 3 hat(i) + hat(j) - 2 hat(k) + lambda (hat(i) - hat(j) - 2 hat(k) ) . vec(r) =(2 hat(i) - hat(j) - 56 hat(k)) + mu ( 3 hat(i) - 5 hat(j) - 4 hat(k)) (iii) (x-2)/(2) = (y - 1)/(5) = (z + 3)/(-3) and (x + 2)/(-1) = (y - 4)/(8) = (z - 5)/(4) (iv) (x - 4)/(3) = (y + 1)/(4) = (z - 6)/(5) and (x-5)/(1) = (2y +5)/(-2) = (z - 3)/(1) (v) (5 -x)/(3) = (y + 3)/(-4) , z = 7 and x = (1-y)/(2) = (z - 6)/(2) (vi) (x + 3)/(3) = (y - 1)/(5) = (z + 3)/(4) and (x + 1)/(1) = (y - 4)/(1) = (z-5)/(2) .

vec(r )=(-4hat(i)+4hat(j) +hat(k)) + lambda (hat(i) +hat(j) -hat(k)) vec(r)=(-3hat(i) -8hat(j) -3hat(k)) + mu (2hat(i) +3hat(j) +3hat(k))

Find the equation of the line perpendicular to the lines : vec(r) = ( 3 hat(i) + 2 hat(j) - 4 hat(k)) + lambda (hat(i) + 2 hat(j) - 2 hat(k)) and vec(r) = (5 hat(j) - 2 hat(k) + mu (3 hat(i) + 2 hat(j) + 6 hat(k) ) and passing through the point (1,1,1) .