Home
Class 12
MATHS
Find the shortest distance and the vecto...

Find the shortest distance and the vector equation of the line of shortest distance between the lines given by:
`vec(r) = (3 hat(i) + 8 hat(j) + 3 hat(k) ) + lambda (3 hat(i) - hat(j) + hat(k))` and
`vec(r) = (-3 hat(i) - 7 hat(j) + 6 hat(k)) + mu (-3 hat(i) + 2 hat(j) + 4 hat(k))`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the shortest distance and the vector equation of the line of shortest distance between the given lines, we will follow these steps: ### Step 1: Identify the given lines The two lines are represented as: 1. Line 1: \(\vec{r_1} = (3 \hat{i} + 8 \hat{j} + 3 \hat{k}) + \lambda (3 \hat{i} - \hat{j} + \hat{k})\) 2. Line 2: \(\vec{r_2} = (-3 \hat{i} - 7 \hat{j} + 6 \hat{k}) + \mu (-3 \hat{i} + 2 \hat{j} + 4 \hat{k})\) ### Step 2: Extract points and direction vectors From the equations, we can identify: - Point on Line 1, \( \vec{a_1} = 3 \hat{i} + 8 \hat{j} + 3 \hat{k} \) - Direction vector of Line 1, \( \vec{b_1} = 3 \hat{i} - \hat{j} + \hat{k} \) - Point on Line 2, \( \vec{a_2} = -3 \hat{i} - 7 \hat{j} + 6 \hat{k} \) - Direction vector of Line 2, \( \vec{b_2} = -3 \hat{i} + 2 \hat{j} + 4 \hat{k} \) ### Step 3: Calculate \( \vec{a_2} - \vec{a_1} \) \[ \vec{a_2} - \vec{a_1} = (-3 \hat{i} - 7 \hat{j} + 6 \hat{k}) - (3 \hat{i} + 8 \hat{j} + 3 \hat{k}) = -6 \hat{i} - 15 \hat{j} + 3 \hat{k} \] ### Step 4: Calculate the cross product \( \vec{b_1} \times \vec{b_2} \) Using the determinant method: \[ \vec{b_1} \times \vec{b_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -1 & 1 \\ -3 & 2 & 4 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i}((-1)(4) - (1)(2)) - \hat{j}((3)(4) - (1)(-3)) + \hat{k}((3)(2) - (-1)(-3)) \] \[ = \hat{i}(-4 - 2) - \hat{j}(12 + 3) + \hat{k}(6 - 3) \] \[ = -6 \hat{i} - 15 \hat{j} + 3 \hat{k} \] ### Step 5: Calculate the magnitude of \( \vec{b_1} \times \vec{b_2} \) \[ |\vec{b_1} \times \vec{b_2}| = \sqrt{(-6)^2 + (-15)^2 + (3)^2} = \sqrt{36 + 225 + 9} = \sqrt{270} \] ### Step 6: Calculate the shortest distance \( d \) Using the formula for the shortest distance between two skew lines: \[ d = \frac{|(\vec{a_2} - \vec{a_1}) \cdot (\vec{b_1} \times \vec{b_2})|}{|\vec{b_1} \times \vec{b_2}|} \] Calculating the dot product: \[ (\vec{a_2} - \vec{a_1}) \cdot (\vec{b_1} \times \vec{b_2}) = (-6 \hat{i} - 15 \hat{j} + 3 \hat{k}) \cdot (-6 \hat{i} - 15 \hat{j} + 3 \hat{k}) \] \[ = (-6)(-6) + (-15)(-15) + (3)(3) = 36 + 225 + 9 = 270 \] Thus, \[ d = \frac{|270|}{\sqrt{270}} = \sqrt{270} \] ### Step 7: Find the vector equation of the line of shortest distance The line of shortest distance passes through point \( \vec{a_1} \) with direction \( \vec{b_1} \times \vec{b_2} \): \[ \vec{r} = \vec{a_1} + \gamma (\vec{b_1} \times \vec{b_2}) \] Substituting the values: \[ \vec{r} = (3 \hat{i} + 8 \hat{j} + 3 \hat{k}) + \gamma (-6 \hat{i} - 15 \hat{j} + 3 \hat{k}) \] ### Final Answer The shortest distance is \( \sqrt{270} \) and the vector equation of the line of shortest distance is: \[ \vec{r} = (3 - 6\gamma) \hat{i} + (8 - 15\gamma) \hat{j} + (3 + 3\gamma) \hat{k} \]
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise EXAMPLE|18 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise EXERCISE 11 (A) (SHORT ANSWER TYPE QUESTIONS )|7 Videos
  • RELATIONS AND FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (1)|12 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise CHAPTER TEST 10|12 Videos

Similar Questions

Explore conceptually related problems

Find the shortest distance and the vector equation of the line of shortest distance between the lines given by r=(3hat(i)+8hat(j)+3hat(k))+lambda(3hat(i)-hat(j)+hat(k)) and r=(-3hat(i)-7hat(j)+6hat(k))+mu(-3hat(i)+2hat(j)+4hat(k)) .

Find the distance between the lines L_(1) and L_(2) given by : vec(r) = hat(i) + 2 hat(j) - 4 hat(k) + lambda (2 hat(i) + 3 hat(j) + 6 hat(k)) and vec(r) = 2 hat(i) + 3 hat(j) - 5 hat(k) + mu (2 hat(i) + 3 hat(j) + 6 hat(k)) .

Find the shortest distance between the lines: vec(r) = hat(i) + 2 hat(j) - 3 hat(k) + lambda (3 hat(i) - 4 hat(j) - hat(k)) and vec(r) = 2 hat(i) - hat(j) + hat(k) + mu (hat(i) + hat(j) + 5 hat(k)) .

Find the shortest distance between the lines : vec(r) = (4hat(i) - hat(j)) + lambda(hat(i) + 2hat(j) - 3hat(k)) and vec(r) = (hat(i) - hat(j) + 2hat(k)) + mu (2hat(i) + 4hat(j) - 5hat(k))

Find the point of intersection of the line : vec(r) = (hat(i) + 2 hat(j) + 3 hat(k) ) + lambda (2 hat(i) + hat(j) + 2 hat(k)) and the plane vec(r). (2 hat(i) - 6 hat(j) + 3 hat(k) ) + 5 = 0.

Find the vector and cartesan equation of the plane passing through the poin (1,2,-4) and parallel to the lines. vec(r ) = hat(i) + 2 hat(j) - 4 hat(k) + lambda (2 hat(i) + 3 hat(j) + 6 hat(k)) and vec(r) = hat(i) - 3 hat(j) + 5 hat(k) + mu (hat(i) + hat(j) - hat(k)) .

Find the equation in vector and cartesian form of the line passing through the point : (2,-1, 3) and perpendicular to the lines : vec(r) = (hat(i) + hat(j) - hat(k)) + lambda (2 hat(i) - 2 hat(j) + hat(k)) and vec(r) = (2 hat(i) - hat(j) - 3 hat(k) ) + mu (hat(i) + 2 hat(j) + 2 hat(k)) .

vec(r )=(-4hat(i)+4hat(j) +hat(k)) + lambda (hat(i) +hat(j) -hat(k)) vec(r)=(-3hat(i) -8hat(j) -3hat(k)) + mu (2hat(i) +3hat(j) +3hat(k))

Show that the lines vec(r) =(hat(i) +2hat(j) +hat(k)) +lambda (hat(i)-hat(j)+hat(k)) " and " vec(r ) =(hat(i) +hat(j) -hat(k)) + mu (hat(i)- hat(j) + 2hat(k)) Do not intersect .

(A ) Find the vector and cartesian equations of the line through the point (5,2,-4) and which is parallel to the vector 3 hat(i) + 2 hat(j) - 8 hat(k) . (b) Find the equation of a line passing through the point P(2, -1, 3) and perpendicular to the lines : vec(r) = (hat(i) + hat(j) - hat(k) ) + lambda (2 hat(i) - 2 hat(j) + hat(k)) and vec(r) = (2 hat(i) - hat(j) - 3 hat(k) ) + mu (hat(i) + 2 hat(j) + 2 hat(k)) .