Home
Class 12
MATHS
Find the vector equation of the plane th...

Find the vector equation of the plane that contains the line `vec(r) = (hat(i) + hat(j) ) + lambda (hat(i) + 2 hat(j) - hat(k))` and the point (-1, 3,-4). Also , find the length of the perpendicular from the point (2,1,4) to the plane, thus botained.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the vector equation of the plane that contains the given line and the point (-1, 3, -4). We will also calculate the length of the perpendicular from the point (2, 1, 4) to the plane. ### Step 1: Identify the line and point The line is given by the vector equation: \[ \vec{r} = (\hat{i} + \hat{j}) + \lambda (\hat{i} + 2\hat{j} - \hat{k}) \] From this, we can identify: - A point on the line, \( A(1, 1, 0) \) (when \(\lambda = 0\)) - The direction vector of the line, \( \vec{b} = \hat{i} + 2\hat{j} - \hat{k} \) The point given is \( P(-1, 3, -4) \). ### Step 2: Find the vector \( \vec{AP} \) The vector \( \vec{AP} \) from point \( A \) to point \( P \) is calculated as follows: \[ \vec{AP} = P - A = (-1 - 1, 3 - 1, -4 - 0) = (-2, 2, -4) \] ### Step 3: Find the normal vector \( \vec{n} \) To find the normal vector \( \vec{n} \) of the plane, we take the cross product of the direction vector \( \vec{b} \) and the vector \( \vec{AP} \): \[ \vec{b} = (1, 2, -1), \quad \vec{AP} = (-2, 2, -4) \] Calculating the cross product \( \vec{AP} \times \vec{b} \): \[ \vec{n} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -2 & 2 & -4 \\ 1 & 2 & -1 \end{vmatrix} \] Calculating the determinant: \[ \vec{n} = \hat{i} \begin{vmatrix} 2 & -4 \\ 2 & -1 \end{vmatrix} - \hat{j} \begin{vmatrix} -2 & -4 \\ 1 & -1 \end{vmatrix} + \hat{k} \begin{vmatrix} -2 & 2 \\ 1 & 2 \end{vmatrix} \] Calculating the minors: 1. \( \begin{vmatrix} 2 & -4 \\ 2 & -1 \end{vmatrix} = (2)(-1) - (2)(-4) = -2 + 8 = 6 \) 2. \( \begin{vmatrix} -2 & -4 \\ 1 & -1 \end{vmatrix} = (-2)(-1) - (1)(-4) = 2 + 4 = 6 \) 3. \( \begin{vmatrix} -2 & 2 \\ 1 & 2 \end{vmatrix} = (-2)(2) - (1)(2) = -4 - 2 = -6 \) Thus, we have: \[ \vec{n} = 6\hat{i} - 6\hat{j} - 6\hat{k} = 6(\hat{i} - \hat{j} - \hat{k}) \] ### Step 4: Write the equation of the plane The equation of the plane can be expressed as: \[ \vec{r} \cdot \vec{n} = \vec{p} \cdot \vec{n} \] Where \( \vec{p} = (-1, 3, -4) \) and \( \vec{n} = (6, -6, -6) \). Calculating \( \vec{p} \cdot \vec{n} \): \[ \vec{p} \cdot \vec{n} = (-1)(6) + (3)(-6) + (-4)(-6) = -6 - 18 + 24 = 0 \] Thus, the equation of the plane is: \[ \vec{r} \cdot (6\hat{i} - 6\hat{j} - 6\hat{k}) = 0 \] Or simplified: \[ \vec{r} \cdot (\hat{i} - \hat{j} - \hat{k}) = 0 \] ### Step 5: Find the length of the perpendicular from point (2, 1, 4) to the plane The formula for the distance \( d \) from a point \( (x_0, y_0, z_0) \) to the plane \( Ax + By + Cz + D = 0 \) is given by: \[ d = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}} \] Here, the plane equation can be rewritten as: \[ x - y - z = 0 \quad \text{(where } A = 1, B = -1, C = -1, D = 0\text{)} \] Now substituting \( (x_0, y_0, z_0) = (2, 1, 4) \): \[ d = \frac{|1(2) - 1(1) - 1(4) + 0|}{\sqrt{1^2 + (-1)^2 + (-1)^2}} = \frac{|2 - 1 - 4|}{\sqrt{1 + 1 + 1}} = \frac{|-3|}{\sqrt{3}} = \frac{3}{\sqrt{3}} = \sqrt{3} \] ### Final Answer The vector equation of the plane is: \[ \vec{r} \cdot (\hat{i} - \hat{j} - \hat{k}) = 0 \] The length of the perpendicular from the point (2, 1, 4) to the plane is: \[ \sqrt{3} \]
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise EXAMPLE|18 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise EXERCISE 11 (A) (SHORT ANSWER TYPE QUESTIONS )|7 Videos
  • RELATIONS AND FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (1)|12 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise CHAPTER TEST 10|12 Videos

Similar Questions

Explore conceptually related problems

Find the vector equation of the plane thatcontains the lines vec r=(hat i+hat j)+lambda(hat i+2hat j-hat k) and vec r=(hat i+hat j)+mu(-hat i+hat j-2hat k) Also find the length of perpendicular drawnfrom the point (2,1,4) to the plane thus obtained.

Find the vector equation of a line passing through the point (2,3,2) and parallel to the line : vec(r) = (-2 hat(i) + 3 hat(j) ) + lambda (2 hat(i) - 3 hat(j) + 6 hat(k)) . Also, find the distnace between these two lines.

Find the angle between the line: vec(r) = (hat(i) - hat(j) + hat(k) ) + lambda (2 hat(i) - hat(j) + 3 hat(k)) and the plane vec(r). (2 hat(i) + hat(j) - hat(k) ) = 4. Also, find the whether the line is parallel to the plane or not.

Find the unit vectors perpendicular to the plane of the vectors vec(a) = 2 hat(i) - 6 hat(j)- 3 hat(k) and vec(b)= 4 hat(i) + 3 hat(j) - hat(k).

The unit vector normal to the plane containing vec(a)=(hat(i)-hat(j)-hat(k)) and vec(b)=(hat(i)+hat(j)+hat(k)) is

Find the point of intersection of the line : vec(r) = (hat(i) + 2 hat(j) + 3 hat(k) ) + lambda (2 hat(i) + hat(j) + 2 hat(k)) and the plane vec(r). (2 hat(i) - 6 hat(j) + 3 hat(k) ) + 5 = 0.

Find the vector equation of the plane passing through the intersection of the planes vec r*(hat i+hat j+hat k)=6 and vec r*(2hat i+3hat j+4hat k)=-5 and the point (1,1,1) .

Find a unit vector perpendicular to each one of the vectors vec(a)= ( 4 hat(i) - hat(j)+ 3 hat(k)) and vec(b)=(2hat(i) + 2 hat(j)- hat(k)).

Find the length and the foot of the perpendicular from the point (1, 1, 2) to the plane vec rdot(( hat i-2 hat j+4 hat k)+5=0.

Find a unit vector perpendicular to each one of the vectors vec(a) = 4 hat(i) - hat (j) + 3hat(k) and vec(b) = 3 hat(i) + 2 hat(j) - hat(k) .