Home
Class 12
MATHS
If lines : (x -1)/(2) = (y + 1)/(3) = (z...

If lines : `(x -1)/(2) = (y + 1)/(3) = (z - 1)/(4) ` and `(x - 3)/(1) = (y - k)/(2) = (z)/(1)` intersect, then find the value of 'k' and hence find the equation of the plane containing these lines.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( k \) such that the two given lines intersect, and then we will find the equation of the plane containing these lines. ### Step 1: Identify the lines The two lines are given in symmetric form: 1. Line 1: \( \frac{x - 1}{2} = \frac{y + 1}{3} = \frac{z - 1}{4} \) 2. Line 2: \( \frac{x - 3}{1} = \frac{y - k}{2} = \frac{z}{1} \) ### Step 2: Write the parametric equations of the lines For Line 1, we can express it in parametric form: - Let \( t \) be the parameter for Line 1: \[ x = 1 + 2t, \quad y = -1 + 3t, \quad z = 1 + 4t \] For Line 2, let \( s \) be the parameter: - The parametric equations for Line 2 are: \[ x = 3 + s, \quad y = k + 2s, \quad z = s \] ### Step 3: Set the parametric equations equal to each other To find the intersection, we set the equations of the two lines equal: 1. From \( x \): \[ 1 + 2t = 3 + s \quad \Rightarrow \quad s = 2t - 2 \quad \text{(Equation 1)} \] 2. From \( y \): \[ -1 + 3t = k + 2s \quad \Rightarrow \quad -1 + 3t = k + 2(2t - 2) \quad \Rightarrow \quad -1 + 3t = k + 4t - 4 \] Rearranging gives: \[ 3t - 4t = k - 4 + 1 \quad \Rightarrow \quad -t = k - 3 \quad \Rightarrow \quad t = 3 - k \quad \text{(Equation 2)} \] 3. From \( z \): \[ 1 + 4t = s \quad \Rightarrow \quad s = 1 + 4t \quad \text{(Equation 3)} \] ### Step 4: Substitute and solve for \( k \) Now we have three equations: - From Equation 1: \( s = 2t - 2 \) - From Equation 2: \( t = 3 - k \) - From Equation 3: \( s = 1 + 4t \) Substituting \( t = 3 - k \) into Equation 1: \[ s = 2(3 - k) - 2 = 6 - 2k - 2 = 4 - 2k \quad \text{(Equation 4)} \] Substituting \( t = 3 - k \) into Equation 3: \[ s = 1 + 4(3 - k) = 1 + 12 - 4k = 13 - 4k \quad \text{(Equation 5)} \] Now we set Equation 4 equal to Equation 5: \[ 4 - 2k = 13 - 4k \] Rearranging gives: \[ 4k - 2k = 13 - 4 \quad \Rightarrow \quad 2k = 9 \quad \Rightarrow \quad k = \frac{9}{2} \] ### Step 5: Find the equation of the plane containing the lines To find the equation of the plane containing the two lines, we can use the formula: \[ \begin{vmatrix} x - \alpha_1 & y - \beta_1 & z - \gamma_1 \\ l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \end{vmatrix} = 0 \] Where \( (\alpha_1, \beta_1, \gamma_1) \) is a point on the first line, and \( (l_1, m_1, n_1) \) and \( (l_2, m_2, n_2) \) are direction ratios of the lines. Using \( \alpha_1 = 1, \beta_1 = -1, \gamma_1 = 1 \) for Line 1 and direction ratios \( (2, 3, 4) \) for Line 1 and \( (1, 2, 1) \) for Line 2, we set up the determinant: \[ \begin{vmatrix} x - 1 & y + 1 & z - 1 \\ 2 & 3 & 4 \\ 1 & 2 & 1 \end{vmatrix} = 0 \] ### Step 6: Calculate the determinant Calculating the determinant: \[ (x - 1) \begin{vmatrix} 3 & 4 \\ 2 & 1 \end{vmatrix} - (y + 1) \begin{vmatrix} 2 & 4 \\ 1 & 1 \end{vmatrix} + (z - 1) \begin{vmatrix} 2 & 3 \\ 1 & 2 \end{vmatrix} = 0 \] Calculating the minors: 1. \( \begin{vmatrix} 3 & 4 \\ 2 & 1 \end{vmatrix} = 3 \cdot 1 - 4 \cdot 2 = 3 - 8 = -5 \) 2. \( \begin{vmatrix} 2 & 4 \\ 1 & 1 \end{vmatrix} = 2 \cdot 1 - 4 \cdot 1 = 2 - 4 = -2 \) 3. \( \begin{vmatrix} 2 & 3 \\ 1 & 2 \end{vmatrix} = 2 \cdot 2 - 3 \cdot 1 = 4 - 3 = 1 \) Substituting back gives: \[ (x - 1)(-5) - (y + 1)(-2) + (z - 1)(1) = 0 \] Expanding this: \[ -5x + 5 + 2y + 2 + z - 1 = 0 \] Combining like terms: \[ -5x + 2y + z + 6 = 0 \quad \Rightarrow \quad 5x - 2y - z - 6 = 0 \] ### Final Answer The value of \( k \) is \( \frac{9}{2} \) and the equation of the plane containing the lines is: \[ 5x - 2y - z - 6 = 0 \]
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise EXAMPLE|18 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise EXERCISE 11 (A) (SHORT ANSWER TYPE QUESTIONS )|7 Videos
  • RELATIONS AND FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (1)|12 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise CHAPTER TEST 10|12 Videos

Similar Questions

Explore conceptually related problems

If the lines (x-1)/(2)=(y+1)/(3)=(z-1)/(4) and (x-3)/(1)=(y-k)/(2)=(z)/(1) intersect,then find the value of k .

If lines (x-1)/2=(y+1)/3=(z-1)/4 and (x-3)/1=(y-k)/2=z/1 intersect then find k and hence find the equation of the plane containing these lines

If the lines (x-1)/(k)=(y+1)/(3)=(z-1)/(4)and(x-3)/(1)=(2y-9)/(2k)=(z)/(1) intersect, then find the value of k

If the line (x-1)/(2)=(y+1)/(3)=(z-1)/(4) and (x-3)/(1)=(y-k)/(2)=(z)/(1) intersect, then k is equal to

If the lines ( x - 1 ) /(2 ) = ( y + 1) / ( 3 ) = ( z - 1 ) / ( 4 ) and ( x - 3 ) / ( 1 ) = ( y - k ) / ( 2 ) = (z) / ( 1 ) intersect, then find the value of k.

If the lines (x-3)/(2)=(y+1)/(3)=(z-2)/(4)and(x-4)/(2)=(y-k)/(2)=(z)/(1) intersect, then find the value of k.

If the lines (x-1)/(-3)=(y-2)/(-2y)=(z-3)/(2) and (x-1)/(k)=(y-2)/(1)-(z-3)/(5) are perpendicular,find the value of k and hence find the equation of plane containing these lines.

IF lines (x-1)/(2) =(y+1)/(3) =(z-1)/(4) and x-3 =(y-k) /(2) = z intersect then the value of k is

if the lines (x - 1)/(-3) = ( y - 2)/(2k) = ( z -3)/(2) and (x -1) /(3k) = ( y - 5)/(1) = (z - 6 ) /(-5) are at night angle , then find the value of k .