Home
Class 12
MATHS
Find the angle between the following pai...

Find the angle between the following pairs of lines :
(i) `vec(r) = 3 hat(i) + 2 hat(j) - 4 hat(k) + lambda (hat(i) + 2 hat(j) + 2 hat(k) )`.
`vec(r) = 5 hat(j) - 2 hat(k) + mu ( 3 hat(i) + 2 hat(j) + 6 hat(k)) `
(ii) `vec(r) = 3 hat(i) + hat(j) - 2 hat(k) + lambda (hat(i) - hat(j) - 2 hat(k) )`.
`vec(r) =(2 hat(i) - hat(j) - 56 hat(k)) + mu ( 3 hat(i) - 5 hat(j) - 4 hat(k)) `
(iii) `(x-2)/(2) = (y - 1)/(5) = (z + 3)/(-3) `
and `(x + 2)/(-1) = (y - 4)/(8) = (z - 5)/(4)`
(iv) `(x - 4)/(3) = (y + 1)/(4) = (z - 6)/(5) and (x-5)/(1) = (2y +5)/(-2) = (z - 3)/(1)`
(v) `(5 -x)/(3) = (y + 3)/(-4) , z = 7 and x = (1-y)/(2) = (z - 6)/(2)`
(vi)` (x + 3)/(3) = (y - 1)/(5) = (z + 3)/(4) and (x + 1)/(1) = (y - 4)/(1) = (z-5)/(2) `.

Text Solution

AI Generated Solution

The correct Answer is:
To find the angle between the given pairs of lines, we will use the formula for the angle θ between two vectors **a** and **b**: \[ \cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|} \] Where: - \(\mathbf{a} \cdot \mathbf{b}\) is the dot product of vectors **a** and **b**. - \(|\mathbf{a}|\) and \(|\mathbf{b}|\) are the magnitudes of vectors **a** and **b** respectively. ### (i) Given lines: 1. \(\vec{r_1} = 3\hat{i} + 2\hat{j} - 4\hat{k} + \lambda (\hat{i} + 2\hat{j} + 2\hat{k})\) 2. \(\vec{r_2} = 5\hat{j} - 2\hat{k} + \mu (3\hat{i} + 2\hat{j} + 6\hat{k})\) **Step 1:** Identify direction vectors. - For the first line: \(\mathbf{a} = \hat{i} + 2\hat{j} + 2\hat{k}\) - For the second line: \(\mathbf{b} = 3\hat{i} + 2\hat{j} + 6\hat{k}\) **Step 2:** Calculate the dot product \(\mathbf{a} \cdot \mathbf{b}\). \[ \mathbf{a} \cdot \mathbf{b} = (1)(3) + (2)(2) + (2)(6) = 3 + 4 + 12 = 19 \] **Step 3:** Calculate the magnitudes \(|\mathbf{a}|\) and \(|\mathbf{b}|\). \[ |\mathbf{a}| = \sqrt{1^2 + 2^2 + 2^2} = \sqrt{1 + 4 + 4} = \sqrt{9} = 3 \] \[ |\mathbf{b}| = \sqrt{3^2 + 2^2 + 6^2} = \sqrt{9 + 4 + 36} = \sqrt{49} = 7 \] **Step 4:** Substitute into the cosine formula. \[ \cos \theta = \frac{19}{3 \cdot 7} = \frac{19}{21} \] **Step 5:** Find the angle \(\theta\). \[ \theta = \cos^{-1}\left(\frac{19}{21}\right) \] ### (ii) Given lines: 1. \(\vec{r_1} = 3\hat{i} + \hat{j} - 2\hat{k} + \lambda (\hat{i} - \hat{j} - 2\hat{k})\) 2. \(\vec{r_2} = (2\hat{i} - \hat{j} - 56\hat{k}) + \mu (3\hat{i} - 5\hat{j} - 4\hat{k})\) **Step 1:** Identify direction vectors. - For the first line: \(\mathbf{a} = \hat{i} - \hat{j} - 2\hat{k}\) - For the second line: \(\mathbf{b} = 3\hat{i} - 5\hat{j} - 4\hat{k}\) **Step 2:** Calculate the dot product \(\mathbf{a} \cdot \mathbf{b}\). \[ \mathbf{a} \cdot \mathbf{b} = (1)(3) + (-1)(-5) + (-2)(-4) = 3 + 5 + 8 = 16 \] **Step 3:** Calculate the magnitudes \(|\mathbf{a}|\) and \(|\mathbf{b}|\). \[ |\mathbf{a}| = \sqrt{1^2 + (-1)^2 + (-2)^2} = \sqrt{1 + 1 + 4} = \sqrt{6} \] \[ |\mathbf{b}| = \sqrt{3^2 + (-5)^2 + (-4)^2} = \sqrt{9 + 25 + 16} = \sqrt{50} \] **Step 4:** Substitute into the cosine formula. \[ \cos \theta = \frac{16}{\sqrt{6} \cdot \sqrt{50}} = \frac{16}{\sqrt{300}} = \frac{16}{10\sqrt{3}} = \frac{8}{5\sqrt{3}} \] **Step 5:** Find the angle \(\theta\). \[ \theta = \cos^{-1}\left(\frac{8}{5\sqrt{3}}\right) \] ### (iii) Given lines: 1. \(\frac{x-2}{2} = \frac{y-1}{5} = \frac{z+3}{-3}\) 2. \(\frac{x+2}{-1} = \frac{y-4}{8} = \frac{z-5}{4}\) **Step 1:** Identify direction vectors. - For the first line: \(\mathbf{a} = 2\hat{i} + 5\hat{j} - 3\hat{k}\) - For the second line: \(\mathbf{b} = -1\hat{i} + 8\hat{j} + 4\hat{k}\) **Step 2:** Calculate the dot product \(\mathbf{a} \cdot \mathbf{b}\). \[ \mathbf{a} \cdot \mathbf{b} = (2)(-1) + (5)(8) + (-3)(4) = -2 + 40 - 12 = 26 \] **Step 3:** Calculate the magnitudes \(|\mathbf{a}|\) and \(|\mathbf{b}|\). \[ |\mathbf{a}| = \sqrt{2^2 + 5^2 + (-3)^2} = \sqrt{4 + 25 + 9} = \sqrt{38} \] \[ |\mathbf{b}| = \sqrt{(-1)^2 + 8^2 + 4^2} = \sqrt{1 + 64 + 16} = \sqrt{81} = 9 \] **Step 4:** Substitute into the cosine formula. \[ \cos \theta = \frac{26}{\sqrt{38} \cdot 9} \] **Step 5:** Find the angle \(\theta\). \[ \theta = \cos^{-1}\left(\frac{26}{9\sqrt{38}}\right) \] ### (iv) Given lines: 1. \(\frac{x-4}{3} = \frac{y+1}{4} = \frac{z-6}{5}\) 2. \(\frac{x-5}{1} = \frac{2y+5}{-2} = \frac{z-3}{1}\) **Step 1:** Identify direction vectors. - For the first line: \(\mathbf{a} = 3\hat{i} + 4\hat{j} + 5\hat{k}\) - For the second line: \(\mathbf{b} = \hat{i} - 2\hat{j} + \hat{k}\) **Step 2:** Calculate the dot product \(\mathbf{a} \cdot \mathbf{b}\). \[ \mathbf{a} \cdot \mathbf{b} = (3)(1) + (4)(-2) + (5)(1) = 3 - 8 + 5 = 0 \] **Step 3:** Calculate the magnitudes \(|\mathbf{a}|\) and \(|\mathbf{b}|\). \[ |\mathbf{a}| = \sqrt{3^2 + 4^2 + 5^2} = \sqrt{9 + 16 + 25} = \sqrt{50} \] \[ |\mathbf{b}| = \sqrt{1^2 + (-2)^2 + 1^2} = \sqrt{1 + 4 + 1} = \sqrt{6} \] **Step 4:** Substitute into the cosine formula. \[ \cos \theta = \frac{0}{\sqrt{50} \cdot \sqrt{6}} = 0 \] **Step 5:** Find the angle \(\theta\). \[ \theta = \cos^{-1}(0) = 90^\circ \] ### (v) Given lines: 1. \(\frac{5-x}{3} = \frac{y+3}{-4}, z = 7\) 2. \(x = \frac{1-y}{2} = \frac{z-6}{2}\) **Step 1:** Identify direction vectors. - For the first line: \(\mathbf{a} = -3\hat{i} - 4\hat{j} + 0\hat{k}\) - For the second line: \(\mathbf{b} = 2\hat{i} - 2\hat{j} + 2\hat{k}\) **Step 2:** Calculate the dot product \(\mathbf{a} \cdot \mathbf{b}\). \[ \mathbf{a} \cdot \mathbf{b} = (-3)(2) + (-4)(-2) + (0)(2) = -6 + 8 + 0 = 2 \] **Step 3:** Calculate the magnitudes \(|\mathbf{a}|\) and \(|\mathbf{b}|\). \[ |\mathbf{a}| = \sqrt{(-3)^2 + (-4)^2 + 0^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \] \[ |\mathbf{b}| = \sqrt{2^2 + (-2)^2 + 2^2} = \sqrt{4 + 4 + 4} = \sqrt{12} = 2\sqrt{3} \] **Step 4:** Substitute into the cosine formula. \[ \cos \theta = \frac{2}{5 \cdot 2\sqrt{3}} = \frac{1}{5\sqrt{3}} \] **Step 5:** Find the angle \(\theta\). \[ \theta = \cos^{-1}\left(\frac{1}{5\sqrt{3}}\right) \] ### (vi) Given lines: 1. \(\frac{x+3}{3} = \frac{y-1}{5} = \frac{z+3}{4}\) 2. \(\frac{x+1}{1} = \frac{y-4}{1} = \frac{z-5}{2}\) **Step 1:** Identify direction vectors. - For the first line: \(\mathbf{a} = 3\hat{i} + 5\hat{j} + 4\hat{k}\) - For the second line: \(\mathbf{b} = \hat{i} + \hat{j} + 2\hat{k}\) **Step 2:** Calculate the dot product \(\mathbf{a} \cdot \mathbf{b}\). \[ \mathbf{a} \cdot \mathbf{b} = (3)(1) + (5)(1) + (4)(2) = 3 + 5 + 8 = 16 \] **Step 3:** Calculate the magnitudes \(|\mathbf{a}|\) and \(|\mathbf{b}|\). \[ |\mathbf{a}| = \sqrt{3^2 + 5^2 + 4^2} = \sqrt{9 + 25 + 16} = \sqrt{50} \] \[ |\mathbf{b}| = \sqrt{1^2 + 1^2 + 2^2} = \sqrt{1 + 1 + 4} = \sqrt{6} \] **Step 4:** Substitute into the cosine formula. \[ \cos \theta = \frac{16}{\sqrt{50} \cdot \sqrt{6}} = \frac{16}{\sqrt{300}} = \frac{16}{10\sqrt{3}} = \frac{8}{5\sqrt{3}} \] **Step 5:** Find the angle \(\theta\). \[ \theta = \cos^{-1}\left(\frac{8}{5\sqrt{3}}\right) \]
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise EXERCISE 11 (B) (LONG ANSWER TYPE QUESTIONS (I) )|10 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise EXERCISE 11 (B) (LONG ANSWER TYPE QUESTIONS (II) )|2 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise EXERCISE 11 (A) (LONG ANSWER TYPE QUESTIONS (II) )|2 Videos
  • RELATIONS AND FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (1)|12 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise CHAPTER TEST 10|12 Videos

Similar Questions

Explore conceptually related problems

Find the distance between the lines L_(1) and L_(2) given by : vec(r) = hat(i) + 2 hat(j) - 4 hat(k) + lambda (2 hat(i) + 3 hat(j) + 6 hat(k)) and vec(r) = 2 hat(i) + 3 hat(j) - 5 hat(k) + mu (2 hat(i) + 3 hat(j) + 6 hat(k)) .

vec(r )=(-4hat(i)+4hat(j) +hat(k)) + lambda (hat(i) +hat(j) -hat(k)) vec(r)=(-3hat(i) -8hat(j) -3hat(k)) + mu (2hat(i) +3hat(j) +3hat(k))

Find the equation of the line perpendicular to the lines : vec(r) = ( 3 hat(i) + 2 hat(j) - 4 hat(k)) + lambda (hat(i) + 2 hat(j) - 2 hat(k)) and vec(r) = (5 hat(j) - 2 hat(k) + mu (3 hat(i) + 2 hat(j) + 6 hat(k) ) and passing through the point (1,1,1) .

Find the shortest distance between the lines: vec(r) = hat(i) + 2 hat(j) - 3 hat(k) + lambda (3 hat(i) - 4 hat(j) - hat(k)) and vec(r) = 2 hat(i) - hat(j) + hat(k) + mu (hat(i) + hat(j) + 5 hat(k)) .

Show that the lines vec(r) =(hat(i) +2hat(j) +hat(k)) +lambda (hat(i)-hat(j)+hat(k)) " and " vec(r ) =(hat(i) +hat(j) -hat(k)) + mu (hat(i)- hat(j) + 2hat(k)) Do not intersect .

Find the shortest distance between the lines : vec(r) = (4hat(i) - hat(j)) + lambda(hat(i) + 2hat(j) - 3hat(k)) and vec(r) = (hat(i) - hat(j) + 2hat(k)) + mu (2hat(i) + 4hat(j) - 5hat(k))

Find the point of intersection of the line : vec(r) = (hat(i) + 2 hat(j) + 3 hat(k) ) + lambda (2 hat(i) + hat(j) + 2 hat(k)) and the plane vec(r). (2 hat(i) - 6 hat(j) + 3 hat(k) ) + 5 = 0.

MODERN PUBLICATION-THREE DIMENSIONAL GEOMETRY -EXERCISE 11 (B) (SHORT ANSWER TYPE QUESTIONS )
  1. Show that the three lines with direction cosines (12)/(13),(-3)/(13),...

    Text Solution

    |

  2. Express the following equation of the lines into vector form : (x -...

    Text Solution

    |

  3. Find the cartesian as well as the vector equation of the line passing ...

    Text Solution

    |

  4. (A) The cartesian equations of a line are : (i) (x - 5)/(3) = (y + ...

    Text Solution

    |

  5. (A) find the equation of a line parallel to x-axis and passing through...

    Text Solution

    |

  6. (A ) Find the vector and cartesian equations of the line through the p...

    Text Solution

    |

  7. Find the equation of the line in vector and in cartesian form that ...

    Text Solution

    |

  8. Find the vector equation of the line passing thought the points (-1,\ ...

    Text Solution

    |

  9. Find the vector and cartesian equations of the line that passes throug...

    Text Solution

    |

  10. (A ) Find the equation of a st. line through (-1,2,3) and equally incl...

    Text Solution

    |

  11. Find the angle between the pairs of lines with direction-ratios : (...

    Text Solution

    |

  12. The angle between a line with direction ratios proportional to 2, 2, ...

    Text Solution

    |

  13. Find the angle between the following pairs of lines : (i) vec(r) = ...

    Text Solution

    |

  14. Show that the lines : (i) (x -5)/(7) = (y + 2)/(-5) = (z)/(1) " " a...

    Text Solution

    |

  15. (i) Find the value of 'p' so that the lines : l(1) : (1 - x)/(3) = (...

    Text Solution

    |

  16. Show that the line through the points : (a) (1, -1, 2), (3,4,-2) is ...

    Text Solution

    |