Home
Class 12
MATHS
Find the equation of the line perpendicu...

Find the equation of the line perpendicular to the lines :
`vec(r) = ( 3 hat(i) + 2 hat(j) - 4 hat(k)) + lambda (hat(i) + 2 hat(j) - 2 hat(k))`
and `vec(r) = (5 hat(j) - 2 hat(k) + mu (3 hat(i) + 2 hat(j) + 6 hat(k) )` and passing through the point (1,1,1) .

Text Solution

AI Generated Solution

The correct Answer is:
To find the equation of the line that is perpendicular to the given lines and passes through the point (1, 1, 1), we will follow these steps: ### Step 1: Identify the direction vectors of the given lines The first line is given by: \[ \vec{r_1} = (3 \hat{i} + 2 \hat{j} - 4 \hat{k}) + \lambda (\hat{i} + 2 \hat{j} - 2 \hat{k}) \] The direction vector \( \vec{b_1} \) of the first line is: \[ \vec{b_1} = \hat{i} + 2\hat{j} - 2\hat{k} \] The second line is given by: \[ \vec{r_2} = (5 \hat{j} - 2 \hat{k}) + \mu (3 \hat{i} + 2 \hat{j} + 6 \hat{k}) \] The direction vector \( \vec{b_2} \) of the second line is: \[ \vec{b_2} = 3\hat{i} + 2\hat{j} + 6\hat{k} \] ### Step 2: Find the cross product of the direction vectors To find the direction vector \( \vec{b} \) of the line we are looking for, we take the cross product of \( \vec{b_1} \) and \( \vec{b_2} \): \[ \vec{b} = \vec{b_1} \times \vec{b_2} \] Calculating the cross product: \[ \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & -2 \\ 3 & 2 & 6 \end{vmatrix} \] Calculating the determinant: \[ \vec{b} = \hat{i}(2 \cdot 6 - (-2) \cdot 2) - \hat{j}(1 \cdot 6 - (-2) \cdot 3) + \hat{k}(1 \cdot 2 - 2 \cdot 3) \] \[ = \hat{i}(12 + 4) - \hat{j}(6 + 6) + \hat{k}(2 - 6) \] \[ = 16\hat{i} - 12\hat{j} - 4\hat{k} \] ### Step 3: Write the equation of the line The equation of the line can be expressed in vector form as: \[ \vec{r} = \vec{A} + \lambda \vec{b} \] where \( \vec{A} = (1, 1, 1) \) and \( \vec{b} = (16, -12, -4) \). Thus, the equation of the line is: \[ \vec{r} = (1 \hat{i} + 1 \hat{j} + 1 \hat{k}) + \lambda (16 \hat{i} - 12 \hat{j} - 4 \hat{k}) \] ### Step 4: Write the parametric equations From the vector equation, we can derive the parametric equations: \[ x = 1 + 16\lambda \] \[ y = 1 - 12\lambda \] \[ z = 1 - 4\lambda \] ### Final Answer The equation of the line perpendicular to the given lines and passing through the point (1, 1, 1) is: \[ \vec{r} = (1 + 16\lambda) \hat{i} + (1 - 12\lambda) \hat{j} + (1 - 4\lambda) \hat{k} \] ---
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise EXERCISE 11 (B) (LONG ANSWER TYPE QUESTIONS (II) )|2 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise EXERCISE 11 (C) (LONG ANSWER TYPE QUESTIONS(I) )|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise EXERCISE 11 (B) (SHORT ANSWER TYPE QUESTIONS )|16 Videos
  • RELATIONS AND FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (1)|12 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise CHAPTER TEST 10|12 Videos

Similar Questions

Explore conceptually related problems

Find the shortest distance between the lines : vec(r) = (4hat(i) - hat(j)) + lambda(hat(i) + 2hat(j) - 3hat(k)) and vec(r) = (hat(i) - hat(j) + 2hat(k)) + mu (2hat(i) + 4hat(j) - 5hat(k))

(A ) Find the vector and cartesian equations of the line through the point (5,2,-4) and which is parallel to the vector 3 hat(i) + 2 hat(j) - 8 hat(k) . (b) Find the equation of a line passing through the point P(2, -1, 3) and perpendicular to the lines : vec(r) = (hat(i) + hat(j) - hat(k) ) + lambda (2 hat(i) - 2 hat(j) + hat(k)) and vec(r) = (2 hat(i) - hat(j) - 3 hat(k) ) + mu (hat(i) + 2 hat(j) + 2 hat(k)) .

Find the equation in vector and cartesian form of the line passing through the point : (2,-1, 3) and perpendicular to the lines : vec(r) = (hat(i) + hat(j) - hat(k)) + lambda (2 hat(i) - 2 hat(j) + hat(k)) and vec(r) = (2 hat(i) - hat(j) - 3 hat(k) ) + mu (hat(i) + 2 hat(j) + 2 hat(k)) .

Find the point of intersection of the line : vec(r) = (hat(i) + 2 hat(j) + 3 hat(k) ) + lambda (2 hat(i) + hat(j) + 2 hat(k)) and the plane vec(r). (2 hat(i) - 6 hat(j) + 3 hat(k) ) + 5 = 0.

Show that the lines vec(r) =(hat(i) +2hat(j) +hat(k)) +lambda (hat(i)-hat(j)+hat(k)) " and " vec(r ) =(hat(i) +hat(j) -hat(k)) + mu (hat(i)- hat(j) + 2hat(k)) Do not intersect .

Find the equations of a line passing through the point P(2,-1,3) and perpendicular to the lines vec(r ) =(hat(i) + hat(j) -hat(k)) +lambda (2hat(i) -2hat(j) +hat(k)) and vec( r) =(2hat(i) -hat(j) -3hat(k)) +mu (hat(i) +2hat(j) +2hat(k))

Find the distance between the lines L_(1) and L_(2) given by : vec(r) = hat(i) + 2 hat(j) - 4 hat(k) + lambda (2 hat(i) + 3 hat(j) + 6 hat(k)) and vec(r) = 2 hat(i) + 3 hat(j) - 5 hat(k) + mu (2 hat(i) + 3 hat(j) + 6 hat(k)) .

Find the angle between the following pairs of lines : (i) vec(r) = 3 hat(i) + 2 hat(j) - 4 hat(k) + lambda (hat(i) + 2 hat(j) + 2 hat(k) ) . vec(r) = 5 hat(j) - 2 hat(k) + mu ( 3 hat(i) + 2 hat(j) + 6 hat(k)) (ii) vec(r) = 3 hat(i) + hat(j) - 2 hat(k) + lambda (hat(i) - hat(j) - 2 hat(k) ) . vec(r) =(2 hat(i) - hat(j) - 56 hat(k)) + mu ( 3 hat(i) - 5 hat(j) - 4 hat(k)) (iii) (x-2)/(2) = (y - 1)/(5) = (z + 3)/(-3) and (x + 2)/(-1) = (y - 4)/(8) = (z - 5)/(4) (iv) (x - 4)/(3) = (y + 1)/(4) = (z - 6)/(5) and (x-5)/(1) = (2y +5)/(-2) = (z - 3)/(1) (v) (5 -x)/(3) = (y + 3)/(-4) , z = 7 and x = (1-y)/(2) = (z - 6)/(2) (vi) (x + 3)/(3) = (y - 1)/(5) = (z + 3)/(4) and (x + 1)/(1) = (y - 4)/(1) = (z-5)/(2) .

Find the vector and cartesian forms of the equation of the plane containing two lines : vec(r)= (i) + 2 hat(j) - 4 hat(k) + lambda (2 hat(i) + 3 hat(j) + 6 hat(k)) and vec(r) = 3 hat(j) - 5 hat(k) + mu ( - 2 hat(i) + 3 hat(j) + 8 hat(k)) .

vec(r )=(-4hat(i)+4hat(j) +hat(k)) + lambda (hat(i) +hat(j) -hat(k)) vec(r)=(-3hat(i) -8hat(j) -3hat(k)) + mu (2hat(i) +3hat(j) +3hat(k))