Home
Class 12
MATHS
Find the equation in vector and cartesia...

Find the equation in vector and cartesian form of the line passing through the point :
(2,-1, 3) and perpendicular to the lines :
`vec(r) = (hat(i) + hat(j) - hat(k)) + lambda (2 hat(i) - 2 hat(j) + hat(k)) ` and
`vec(r) = (2 hat(i) - hat(j) - 3 hat(k) ) + mu (hat(i) + 2 hat(j) + 2 hat(k))` .

Text Solution

AI Generated Solution

The correct Answer is:
To find the equation of the line passing through the point \( P(2, -1, 3) \) and perpendicular to the given lines, we can follow these steps: ### Step 1: Identify the direction vectors of the given lines The first line is given by: \[ \vec{r_1} = \hat{i} + \hat{j} - \hat{k} + \lambda (2\hat{i} - 2\hat{j} + \hat{k}) \] The direction vector of this line can be extracted as: \[ \vec{A} = 2\hat{i} - 2\hat{j} + \hat{k} \] The second line is given by: \[ \vec{r_2} = (2\hat{i} - \hat{j} - 3\hat{k}) + \mu (\hat{i} + 2\hat{j} + 2\hat{k}) \] The direction vector of this line can be extracted as: \[ \vec{B} = \hat{i} + 2\hat{j} + 2\hat{k} \] ### Step 2: Find the cross product of the direction vectors To find a direction vector of the line that is perpendicular to both lines, we compute the cross product \( \vec{C} = \vec{A} \times \vec{B} \). \[ \vec{C} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -2 & 1 \\ 1 & 2 & 2 \end{vmatrix} \] Calculating the determinant: \[ \vec{C} = \hat{i} \begin{vmatrix} -2 & 1 \\ 2 & 2 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & -2 \\ 1 & 2 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \( (-2)(2) - (1)(2) = -4 - 2 = -6 \) 2. \( (2)(2) - (1)(1) = 4 - 1 = 3 \) 3. \( (2)(2) - (-2)(1) = 4 + 2 = 6 \) Thus, we have: \[ \vec{C} = -6\hat{i} - 3\hat{j} + 6\hat{k} \] ### Step 3: Write the vector equation of the line The line passing through point \( P(2, -1, 3) \) with direction vector \( \vec{C} \) can be expressed as: \[ \vec{r} = \vec{P} + \lambda \vec{C} \] Where \( \vec{P} = 2\hat{i} - \hat{j} + 3\hat{k} \) and \( \vec{C} = -6\hat{i} - 3\hat{j} + 6\hat{k} \). Thus, the vector equation becomes: \[ \vec{r} = (2\hat{i} - \hat{j} + 3\hat{k}) + \lambda (-6\hat{i} - 3\hat{j} + 6\hat{k}) \] ### Step 4: Convert to Cartesian form To convert to Cartesian form, we express the vector equation in terms of \( x, y, z \): Let \( \vec{r} = x\hat{i} + y\hat{j} + z\hat{k} \). From the vector equation: \[ x = 2 - 6\lambda \] \[ y = -1 - 3\lambda \] \[ z = 3 + 6\lambda \] We can eliminate \( \lambda \) from these equations: 1. From \( x = 2 - 6\lambda \), we get \( \lambda = \frac{2 - x}{6} \). 2. Substituting \( \lambda \) in the equation for \( y \): \[ y = -1 - 3\left(\frac{2 - x}{6}\right) = -1 - \frac{3(2 - x)}{6} = -1 - \frac{6 - 3x}{6} = -1 - 1 + \frac{x}{2} = \frac{x}{2} - 2 \] 3. Similarly, for \( z \): \[ z = 3 + 6\left(\frac{2 - x}{6}\right) = 3 + 2 - x = 5 - x \] Thus, the Cartesian equations are: \[ \frac{x - 2}{-6} = \frac{y + 1}{-3} = \frac{z - 3}{6} \] ### Final Answer The equation of the line in vector form is: \[ \vec{r} = (2\hat{i} - \hat{j} + 3\hat{k}) + \lambda (-6\hat{i} - 3\hat{j} + 6\hat{k}) \] And in Cartesian form: \[ \frac{x - 2}{-6} = \frac{y + 1}{-3} = \frac{z - 3}{6} \]
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise EXERCISE 11 (B) (LONG ANSWER TYPE QUESTIONS (II) )|2 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise EXERCISE 11 (C) (LONG ANSWER TYPE QUESTIONS(I) )|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise EXERCISE 11 (B) (SHORT ANSWER TYPE QUESTIONS )|16 Videos
  • RELATIONS AND FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (1)|12 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise CHAPTER TEST 10|12 Videos

Similar Questions

Explore conceptually related problems

Find the equations of a line passing through the point P(2,-1,3) and perpendicular to the lines vec(r ) =(hat(i) + hat(j) -hat(k)) +lambda (2hat(i) -2hat(j) +hat(k)) and vec( r) =(2hat(i) -hat(j) -3hat(k)) +mu (hat(i) +2hat(j) +2hat(k))

(A ) Find the vector and cartesian equations of the line through the point (5,2,-4) and which is parallel to the vector 3 hat(i) + 2 hat(j) - 8 hat(k) . (b) Find the equation of a line passing through the point P(2, -1, 3) and perpendicular to the lines : vec(r) = (hat(i) + hat(j) - hat(k) ) + lambda (2 hat(i) - 2 hat(j) + hat(k)) and vec(r) = (2 hat(i) - hat(j) - 3 hat(k) ) + mu (hat(i) + 2 hat(j) + 2 hat(k)) .

Find the vector and cartesan equation of the plane passing through the poin (1,2,-4) and parallel to the lines. vec(r ) = hat(i) + 2 hat(j) - 4 hat(k) + lambda (2 hat(i) + 3 hat(j) + 6 hat(k)) and vec(r) = hat(i) - 3 hat(j) + 5 hat(k) + mu (hat(i) + hat(j) - hat(k)) .

Show that the lines vec(r) =(hat(i) +2hat(j) +hat(k)) +lambda (hat(i)-hat(j)+hat(k)) " and " vec(r ) =(hat(i) +hat(j) -hat(k)) + mu (hat(i)- hat(j) + 2hat(k)) Do not intersect .

Find the shortest distance between the lines : vec(r) = (4hat(i) - hat(j)) + lambda(hat(i) + 2hat(j) - 3hat(k)) and vec(r) = (hat(i) - hat(j) + 2hat(k)) + mu (2hat(i) + 4hat(j) - 5hat(k))

Find the point of intersection of the line : vec(r) = (hat(i) + 2 hat(j) + 3 hat(k) ) + lambda (2 hat(i) + hat(j) + 2 hat(k)) and the plane vec(r). (2 hat(i) - 6 hat(j) + 3 hat(k) ) + 5 = 0.

vec(r )=(-4hat(i)+4hat(j) +hat(k)) + lambda (hat(i) +hat(j) -hat(k)) vec(r)=(-3hat(i) -8hat(j) -3hat(k)) + mu (2hat(i) +3hat(j) +3hat(k))

The equation of line passing through (3,-1,2) and perpendicular to the lines vec(r)=(hat(i)+hat(j)-hat(k))+lamda(2hat(i)-2hat(j)+hat(k)) and vec(r)=(2hat(i)+hat(j)-3hat(k))+mu(hat(i)-2hat(j)+2hat(k)) is

Find the distance between the lines L_(1) and L_(2) given by : vec(r) = hat(i) + 2 hat(j) - 4 hat(k) + lambda (2 hat(i) + 3 hat(j) + 6 hat(k)) and vec(r) = 2 hat(i) + 3 hat(j) - 5 hat(k) + mu (2 hat(i) + 3 hat(j) + 6 hat(k)) .