Home
Class 12
MATHS
A line passing through the point A with ...

A line passing through the point A with position vector `vec(a) = 4 hat(i) + 2 hat(j) + 2 hat(k)` is parallel to the vector `vec(b) = 2 hat(i) + 3 hat(j) + 6 hat(k)`. Find the length of the perpendicular drawn on this line from a point P with position vector `vec(r_(1)) = hat(i) + 2 hat(j) + 3 hat(k)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the instructions provided in the video transcript and apply the necessary mathematical concepts related to 3D geometry. ### Step 1: Identify the position vectors We have: - Point A with position vector \( \vec{a} = 4\hat{i} + 2\hat{j} + 2\hat{k} \) - Direction vector \( \vec{b} = 2\hat{i} + 3\hat{j} + 6\hat{k} \) - Point P with position vector \( \vec{r_1} = \hat{i} + 2\hat{j} + 3\hat{k} \) ### Step 2: Write the equation of the line The equation of the line passing through point A and parallel to vector \( \vec{b} \) can be expressed as: \[ \vec{r} = \vec{a} + \lambda \vec{b} \] Substituting the values: \[ \vec{r} = (4\hat{i} + 2\hat{j} + 2\hat{k}) + \lambda(2\hat{i} + 3\hat{j} + 6\hat{k}) \] This gives us: \[ \vec{r} = (4 + 2\lambda)\hat{i} + (2 + 3\lambda)\hat{j} + (2 + 6\lambda)\hat{k} \] ### Step 3: Find the vector \( \vec{r_1} - \vec{a} \) Now, we need to calculate \( \vec{r_1} - \vec{a} \): \[ \vec{r_1} - \vec{a} = (\hat{i} + 2\hat{j} + 3\hat{k}) - (4\hat{i} + 2\hat{j} + 2\hat{k}) \] Calculating this gives: \[ \vec{r_1} - \vec{a} = (-3\hat{i} + 0\hat{j} + 1\hat{k}) = -3\hat{i} + \hat{k} \] ### Step 4: Compute the cross product \( (\vec{r_1} - \vec{a}) \times \vec{b} \) Next, we compute the cross product: \[ \vec{u} = \vec{r_1} - \vec{a} = -3\hat{i} + 0\hat{j} + 1\hat{k} \] \[ \vec{b} = 2\hat{i} + 3\hat{j} + 6\hat{k} \] The cross product \( \vec{u} \times \vec{b} \) is calculated as follows: \[ \vec{u} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -3 & 0 & 1 \\ 2 & 3 & 6 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i}(0 \cdot 6 - 1 \cdot 3) - \hat{j}(-3 \cdot 6 - 1 \cdot 2) + \hat{k}(-3 \cdot 3 - 0 \cdot 2) \] \[ = \hat{i}(0 - 3) - \hat{j}(-18 - 2) + \hat{k}(-9) \] \[ = -3\hat{i} + 20\hat{j} - 9\hat{k} \] ### Step 5: Find the modulus of the cross product Now, we find the modulus of the cross product: \[ |\vec{u} \times \vec{b}| = \sqrt{(-3)^2 + 20^2 + (-9)^2} = \sqrt{9 + 400 + 81} = \sqrt{490} \] ### Step 6: Find the modulus of vector \( \vec{b} \) Next, we find the modulus of vector \( \vec{b} \): \[ |\vec{b}| = \sqrt{2^2 + 3^2 + 6^2} = \sqrt{4 + 9 + 36} = \sqrt{49} = 7 \] ### Step 7: Calculate the perpendicular distance Finally, the length of the perpendicular drawn from point P to the line is given by: \[ d = \frac{|\vec{u} \times \vec{b}|}{|\vec{b}|} = \frac{\sqrt{490}}{7} \] Simplifying this gives: \[ d = \frac{\sqrt{490}}{7} = \frac{7\sqrt{10}}{7} = \sqrt{10} \] ### Final Answer The length of the perpendicular drawn on this line from point P is \( \sqrt{10} \). ---
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise EXERCISE 11 (D) (LONG ANSWER TYPE QUESTIONS(I) )|12 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise EXERCISE 11 (D) (LONG ANSWER TYPE QUESTIONS(II) )|10 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise EXERCISE 11 (C) (LONG ANSWER TYPE QUESTIONS(I) )|9 Videos
  • RELATIONS AND FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (1)|12 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise CHAPTER TEST 10|12 Videos

Similar Questions

Explore conceptually related problems

Find the vector equation of a plane passing through the point having position vector 2 hat(i) + hat(j) + hat(k) and perpendicular to the vector : 4 hat(i) - 2 hat(j) + 3hat(k) .

Find the unit vectors perpendicular to the plane of the vectors vec(a) = 2 hat(i) - 6 hat(j)- 3 hat(k) and vec(b)= 4 hat(i) + 3 hat(j) - hat(k).

Find the vector equation of a line passing through the point with position vector 2hat(i) + hat(j) - hat(k) and parallel to the line joining the points - hat(i) + hat(j) + 4 hat(k) and hat(i) + 2 hat(j) + 2 hat(k) .

Find a unit vector perpendicular to each one of the vectors vec(a) = 4 hat(i) - hat (j) + 3hat(k) and vec(b) = 3 hat(i) + 2 hat(j) - hat(k) .

The unit vector parallel to the resultant of the vectors vec(A) = hat(i) + 2 hat(j) - hat(k) and vec(B) = 2 hat(i) + 4 hat(j) - hat(k) is

If vec(a) = hat(i) + 2 hat(j) + 3 hat(k) and vec(b) = 2 hat(i) + 3 hat(j) + hat(k) , find a unit vector in the direction of ( 2 vec(a) + vec(b)) .

Find a unit vector perpendicular to each one of the vectors vec(a)= ( 4 hat(i) - hat(j)+ 3 hat(k)) and vec(b)=(2hat(i) + 2 hat(j)- hat(k)).

(i) Find the vector equation of a line passing through a point with position vector 2 hat(i) - hat(j) + hat(k) and parallel to the line joining the points with position vectors - hat(i) + 4 hat(j) + hat(k) and hat(i) + 2 hat(j) + 2 hat(k). Also, find the cartesian equivalent of the equation. (ii) Find the vector equation of a line passing through the point with position vector hat(i) - 2 hat(j) - 3 hat(k) and parallel to the line joining the points with position vectors hat(i) - hat(j) + 4 hat(k) and 2 hat(i) + hat(j) + 2 hat(k) . Also, find the cartesian form of the equation.

Image of the point P with position vector 7hat(i) - hat(j) + 2hat(k) in the line whose vector equation is vec(r) = 9hat(i) + 5hat(j) + 5hat(k) + lambda(hat(i) + 3hat(j) + 5hat(k)) has the position .

Show that the point A , B and C with position vectors vec a =3 hat i - 4 hat j -4 hat k = 2 hat i j + hat k and vec c = hat i - 3 hat j - 5 hat k , respectively from the vertices of a right angled triangle.