Home
Class 12
MATHS
Find the shortest distance between the l...

Find the shortest distance between the lines: `(i) vec(r) = 3 hati + 8 hat(j) + 3 hatk + lambda (3 hati - hatj + hatk) `
`and vec(r) = - 3 hat(i) - 7 hatj + 6 hatk + mu (-3 hati + 2 hatj + 4 hatk ) `
(ii) `( hati - hatj + 2 hatk) + lambda ( -2 hati + hatj + 3 hatk )`
`and (2 hati + 3 hatj - hatk) + mu (3 hati - 2 hatj + 2 hatk). `
(iii) `vec(r) = (hati + 2 hatj + 3 hatk) + lambda ( hati - 3 hatj + 2 hatk )`
and `vec(r) = (4 hati + 5 hatj + 6 hatk) + mu (2 hati + 3 hatj + hatk)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the shortest distance between the given lines, we will use the formula for the shortest distance between two skew lines represented in vector form. The formula is given by: \[ D_{min} = \frac{|(\vec{C} - \vec{A}) \cdot (\vec{B} \times \vec{D})|}{|\vec{B} \times \vec{D}|} \] where: - \(\vec{A}\) and \(\vec{B}\) are direction vectors of the first line, - \(\vec{C}\) and \(\vec{D}\) are direction vectors of the second line. ### (i) Find the shortest distance between the lines: 1. **Identify the vectors:** - For the first line: \[ \vec{A} = 3\hat{i} + 8\hat{j} + 3\hat{k}, \quad \vec{B} = 3\hat{i} - \hat{j} + \hat{k} \] - For the second line: \[ \vec{C} = -3\hat{i} - 7\hat{j} + 6\hat{k}, \quad \vec{D} = -3\hat{i} + 2\hat{j} + 4\hat{k} \] 2. **Calculate \(\vec{C} - \vec{A}\):** \[ \vec{C} - \vec{A} = (-3 - 3)\hat{i} + (-7 - 8)\hat{j} + (6 - 3)\hat{k} = -6\hat{i} - 15\hat{j} + 3\hat{k} \] 3. **Calculate \(\vec{B} \times \vec{D}\):** \[ \vec{B} \times \vec{D} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -1 & 1 \\ -3 & 2 & 4 \end{vmatrix} \] - Expanding the determinant: \[ = \hat{i}((-1)(4) - (1)(2)) - \hat{j}((3)(4) - (1)(-3)) + \hat{k}((3)(2) - (-1)(-3)) \] \[ = \hat{i}(-4 - 2) - \hat{j}(12 + 3) + \hat{k}(6 - 3) = -6\hat{i} - 15\hat{j} + 3\hat{k} \] 4. **Calculate the dot product \((\vec{C} - \vec{A}) \cdot (\vec{B} \times \vec{D})\):** \[ = (-6)(-6) + (-15)(-15) + (3)(3) = 36 + 225 + 9 = 270 \] 5. **Calculate the magnitude \(|\vec{B} \times \vec{D}|\):** \[ |\vec{B} \times \vec{D}| = \sqrt{(-6)^2 + (-15)^2 + 3^2} = \sqrt{36 + 225 + 9} = \sqrt{270} = 3\sqrt{30} \] 6. **Calculate the shortest distance \(D_{min}\):** \[ D_{min} = \frac{|270|}{3\sqrt{30}} = \frac{90}{\sqrt{30}} = 3\sqrt{10} \]
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise EXERCISE 11 (D) (LONG ANSWER TYPE QUESTIONS(II) )|10 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise EXERCISE 11 (E) (SHORT ANSWER TYPE QUESTIONS )|23 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise EXERCISE 11 (C) (LONG ANSWER TYPE QUESTIONS(II) )|8 Videos
  • RELATIONS AND FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (1)|12 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise CHAPTER TEST 10|12 Videos

Similar Questions

Explore conceptually related problems

Find the shortest distance between the lines: (i) vec(r) = 6 hat(i) + 2 hat(j) + 2 hatk + lambda (hati - 2hatj + 2 hatk) and vec(r) = - 4 hati - hatk + mu (3 hati - 2 hatj - 2 hatk ) (ii) vec(r) = (4 hat(i) - hat(j)) + lambda (hati + 2hatj - 3 hatk) and vec(r) = (hati - hatj + 2hatk) + mu (2 hati + 4 hatj - 5 hatk ) (iii) vec(r) = (hati + 2 hatj - 4 hatk) + lambda (2 hati + 3 hatj + 6 hatk ) and vec(r) = (3 hati + 3 hatj + 5 hatk) + mu (-2 hati + 3 hatj + 6 hatk )

Find the shortest distance betwee the lines : vec(r) = (hati + 2 hatj + hatk ) + lambda ( hati - hatj + hatk) and vec(r) = 2 hati - hatj - hakt + mu (2 hati + hatj + 2 hatk) .

Find the shortest distance between lines: vec(r) = 6 hati + 2 hatj + 2 hatk + lambda ( hati - 2 hatj + 2 hatk) and vec(r) = -4 hati - hatk + mu (3 hati - 2 hatj - 2 hatk) .

Find the shortest distance between the lines whose vector equations are : vec(r) = (hati + 2 hatj + 3 hatk ) + lambda (hati -3 hatj + 2 hatk) and vec(r) = 4 hati + 5 hatj + 6 hatk + mu (2 hati + 3 hatj + hatk) .

Find the angle between the following pairs of lines : (i) vec(r) = 2 hati - 5 hatj + hatk + lambda (3 hati + 2 hatj + 6 hatk ) and vec(r) = 7 hati - 6 hatk + mu (hati + 2 hatj + 2 hatk) (ii) vec(r) = 3 hati + hatj - 2 hatk + lambda (hati - hatj - 2 hatk ) and vec(r) = 2 hati - hatj - 56 hatk + mu (3 hati - 5 hatj - 4 hatk) .

The shortest distance between the lines r = ( - hati - hatj - hatk ) + lamda ( 7 hati - 6 hatj + hatk ) and r = ( 3 hati + 5 hatj + 7 hatk ) + mu ( hati - 2 hatj + hatk )

Find the shortest distance between the lines vecr = 2hati - hatj + hatk + lambda(3hati - 2hatj + 5hatk), vecr = 3hati + 2hatj - 4hatk + mu(4hati - hatj + 3hatk)

Find the angle between the following pair of lines : vec(r) = hati + hatj - hatk + lambda (hati - 3 hatj + 2 hatk) and vec(r) = 2 hat(i) - hat(j) + mu (3 hat(i) + hatj - 2 hatk) .

Find the vector and catesian equations of the plane containing the lines : vec(r) = 2 hati + hatj - 3 hatk + lambda (hati + 2 hatj + 5 hatk ) and vec(r) = 3 hati + 3 hatj - 7 hatk + mu (3 hati - 2 hatj + 5 hatk ) .

Find the shortest distance between the lines vecr = hati+ hatj+hatk+lambda(3hati-hatj) and vecr=4hati-hatk+mu(2hati+3hatk)