Home
Class 12
MATHS
Find the shortest distance between the f...

Find the shortest distance between the following (1-4) lines whose vector equations are :
(i) `vec(r) = (lambda - 1) hati + (lambda -1) hatj - (1 + lambda ) hatk `
and `vec(r) = (1 - mu) hat(i) + (2 mu - 1) hatj + (mu + 2) hatk`
(ii) `vec(r) = (1 + lambda) hati + (2 - lambda) hatj + (1 + lambda) hatk`
and `vec(r) = 2 (1 + mu) hati - (1 - mu) hatj + (-1 + 2mu ) hatk` .

Text Solution

AI Generated Solution

The correct Answer is:
To find the shortest distance between the given lines, we will follow the formula for the shortest distance between two skew lines in vector form. The formula is given by: \[ d_{min} = \frac{|(\vec{c} - \vec{a}) \cdot (\vec{b} \times \vec{d})|}{|\vec{b} \times \vec{d}|} \] where: - \(\vec{a}\) and \(\vec{b}\) are direction vectors of the first line, - \(\vec{c}\) and \(\vec{d}\) are direction vectors of the second line, - \(\vec{c} - \vec{a}\) is the vector connecting a point on the first line to a point on the second line, - \(\vec{b} \times \vec{d}\) is the cross product of the direction vectors. ### Part (i) 1. **Identify the lines and extract the vectors**: - Line 1: \(\vec{r_1} = (\lambda - 1) \hat{i} + (\lambda - 1) \hat{j} - (1 + \lambda) \hat{k}\) - Here, \(\vec{a} = (-1, -1, -1)\) and \(\vec{b} = (1, 1, -1)\) - Line 2: \(\vec{r_2} = (1 - \mu) \hat{i} + (2\mu - 1) \hat{j} + (\mu + 2) \hat{k}\) - Here, \(\vec{c} = (1, -1, 2)\) and \(\vec{d} = (-1, 2, 1)\) 2. **Calculate \(\vec{c} - \vec{a}\)**: \[ \vec{c} - \vec{a} = (1 - (-1), -1 - (-1), 2 - (-1)) = (2, 0, 3) \] 3. **Calculate \(\vec{b} \times \vec{d}\)**: \[ \vec{b} \times \vec{d} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & -1 \\ -1 & 2 & 1 \end{vmatrix} = \hat{i}(1 \cdot 1 - (-1) \cdot 2) - \hat{j}(1 \cdot 1 - (-1) \cdot -1) + \hat{k}(1 \cdot 2 - 1 \cdot -1) \] \[ = \hat{i}(1 + 2) - \hat{j}(1 - 1) + \hat{k}(2 + 1) = 3\hat{i} + 0\hat{j} + 3\hat{k} = (3, 0, 3) \] 4. **Calculate the dot product \((\vec{c} - \vec{a}) \cdot (\vec{b} \times \vec{d})\)**: \[ (2, 0, 3) \cdot (3, 0, 3) = 2 \cdot 3 + 0 \cdot 0 + 3 \cdot 3 = 6 + 0 + 9 = 15 \] 5. **Calculate the magnitude of \(\vec{b} \times \vec{d}\)**: \[ |\vec{b} \times \vec{d}| = \sqrt{3^2 + 0^2 + 3^2} = \sqrt{9 + 0 + 9} = \sqrt{18} = 3\sqrt{2} \] 6. **Calculate the shortest distance \(d_{min}\)**: \[ d_{min} = \frac{|15|}{3\sqrt{2}} = \frac{15}{3\sqrt{2}} = \frac{5}{\sqrt{2}} \] ### Part (ii) 1. **Identify the lines and extract the vectors**: - Line 1: \(\vec{r_1} = (1 + \lambda) \hat{i} + (2 - \lambda) \hat{j} + (1 + \lambda) \hat{k}\) - Here, \(\vec{a} = (1, 2, 1)\) and \(\vec{b} = (1, -1, 1)\) - Line 2: \(\vec{r_2} = 2(1 + \mu) \hat{i} - (1 - \mu) \hat{j} + (-1 + 2\mu) \hat{k}\) - Here, \(\vec{c} = (2, -1, -1)\) and \(\vec{d} = (2, 1, 2)\) 2. **Calculate \(\vec{c} - \vec{a}\)**: \[ \vec{c} - \vec{a} = (2 - 1, -1 - 2, -1 - 1) = (1, -3, -2) \] 3. **Calculate \(\vec{b} \times \vec{d}\)**: \[ \vec{b} \times \vec{d} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 1 \\ 2 & 1 & 2 \end{vmatrix} = \hat{i}((-1) \cdot 2 - 1 \cdot 1) - \hat{j}(1 \cdot 2 - 1 \cdot 2) + \hat{k}(1 \cdot 1 - (-1) \cdot 2) \] \[ = \hat{i}(-2 - 1) - \hat{j}(2 - 2) + \hat{k}(1 + 2) = -3\hat{i} + 0\hat{j} + 3\hat{k} = (-3, 0, 3) \] 4. **Calculate the dot product \((\vec{c} - \vec{a}) \cdot (\vec{b} \times \vec{d})\)**: \[ (1, -3, -2) \cdot (-3, 0, 3) = 1 \cdot (-3) + (-3) \cdot 0 + (-2) \cdot 3 = -3 + 0 - 6 = -9 \] 5. **Calculate the magnitude of \(\vec{b} \times \vec{d}\)**: \[ |\vec{b} \times \vec{d}| = \sqrt{(-3)^2 + 0^2 + 3^2} = \sqrt{9 + 0 + 9} = \sqrt{18} = 3\sqrt{2} \] 6. **Calculate the shortest distance \(d_{min}\)**: \[ d_{min} = \frac{|-9|}{3\sqrt{2}} = \frac{9}{3\sqrt{2}} = \frac{3}{\sqrt{2}} \] ### Final Answers: - Shortest distance for part (i): \(\frac{5}{\sqrt{2}}\) - Shortest distance for part (ii): \(\frac{3}{\sqrt{2}}\)
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise EXERCISE 11 (D) (LONG ANSWER TYPE QUESTIONS(II) )|10 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise EXERCISE 11 (E) (SHORT ANSWER TYPE QUESTIONS )|23 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise EXERCISE 11 (C) (LONG ANSWER TYPE QUESTIONS(II) )|8 Videos
  • RELATIONS AND FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (1)|12 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise CHAPTER TEST 10|12 Videos

Similar Questions

Explore conceptually related problems

Find the shortest distance between the following (1-4) lines whose vector equations are : 1. vec(r) = hati + hatj + lambda (2 hati - hatj + hatk ) and vec(r) = 2 hati + hatj - hatk + mu (3 hati - 5 hatj + 2 hatk) .

Find the shortest distance between the following lines whose vector equations are : (i) vec(r) = ( 8 + 3 lambda) hati - (9 + 16 lambda) hatj + (10 + 7 lambda) hatk and vec(r) = 15 hati + 29 hatj + 5 hatk + mu (3 hati + 8 hatj - 5 hatk) (ii) vec(r) = 3 hati - 15 hatj + 9 hatk + lambda (2 hati - 7 hatj + 5 hatk) and vec(r) = (2mu - 1) hati + (1 + mu ) hatj + (9 - 3mu ) hatk .

Find the shortest distance between the following (6 -7) lines whose vector equations are : (i) vec(r) = (1 -t) hati + (t - 2) hatj + (3 - 2t) hatk and vec(r) = (s + 1) hat(i) + (2s - 1) hatj - (2s + 1) hatk (ii) vec(r) = (3 -t) hati + (4 + 2t) hatj + (t - 2) hatk and vec(r) = (1 + s) hati + (3s - 7 ) hatj + (2s -2) hatk. where t and s are scalars.

Determine whether or not the following pairs of lines intersect : vec(r) = (2 lambda + 1) hati - (lambda + 1) hatj + (lambda + 1) hatk. and vec(r) = (3 mu + 2)hati - (5mu + 5 ) hatj + (2 mu - 1) hatk.

Find the shortest distance between the two lines whose vector equations are given by: vecr=(1+lamda)hati+(2-lamda)hatj+(-1+lamda)hatk and vecr=2(1+mu)hati-(1-mu)hatj+(-1+2mu)hatk

Find the shortest distance between the lines whose vector equations are : vec(r) = (hati + 2 hatj + 3 hatk ) + lambda (hati -3 hatj + 2 hatk) and vec(r) = 4 hati + 5 hatj + 6 hatk + mu (2 hati + 3 hatj + hatk) .

Find the shortest distance between the lines l_(1)and l_(1) whose vector equations are vecr=(hati+hatj) + lambda (3hati + 4hatj - 2hatk) …(i) and vecr=(2hati+3hatj) + mu (6hati + 8hatj - 4hatk) …(ii)

Find the shortest distance between the following two lines: vec r=(1+lambda)hat i+(2-lambda)hat j+(lambda+1)hat kvec r=(2hat i-hat j-hat k)+mu(2hat i+hat j+2hat k)