Home
Class 12
MATHS
Consider the equations of the straight l...

Consider the equations of the straight lines given by :
`L_(1) : vec(r) = (hati + 2 hatj + hatk ) + lambda ( hati - hatj + hatk)`
`L_(2) : vec(r) = (2 hati - hatj - hatk) + mu ( 2 hati + hatj + 2 hatk)` .
If `vec(a_(1))= hati + 2 hatj + hatk, " " vec(b_(1)) = hati - hatj + hatk`,
`vec(a_(2)) = 2 hat(i) - hatj - hatk, vec(b_(2)) = 2 hati + hatj + 2 hatk `, then find :
(i) `vec(a_(2)) - vec(a_(1)) " " (ii) vec(b_(2)) - vec(b_(1))`
(iii) `vec(b_(1))xx vec(b_(2)) " " (iv) vec(a_(1)) xx vec(a_(2))`
(v) ` (vec(b_(1)) xx vec(b_(2))).(vec(a_(1)) xxvec(a_(2)))`
(vi) the shortest distance between `L_(1) and L_(2)` .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we will follow the instructions provided in the question and perform the necessary vector operations. ### Given: 1. **Line L1**: \(\vec{r} = \hat{i} + 2\hat{j} + \hat{k} + \lambda(\hat{i} - \hat{j} + \hat{k})\) - \(\vec{a_1} = \hat{i} + 2\hat{j} + \hat{k}\) - \(\vec{b_1} = \hat{i} - \hat{j} + \hat{k}\) 2. **Line L2**: \(\vec{r} = (2\hat{i} - \hat{j} - \hat{k}) + \mu(2\hat{i} + \hat{j} + 2\hat{k})\) - \(\vec{a_2} = 2\hat{i} - \hat{j} - \hat{k}\) - \(\vec{b_2} = 2\hat{i} + \hat{j} + 2\hat{k}\) ### Step 1: Calculate \(\vec{a_2} - \vec{a_1}\) \[ \vec{a_2} - \vec{a_1} = (2\hat{i} - \hat{j} - \hat{k}) - (\hat{i} + 2\hat{j} + \hat{k}) \] \[ = (2 - 1)\hat{i} + (-1 - 2)\hat{j} + (-1 - 1)\hat{k} \] \[ = \hat{i} - 3\hat{j} - 2\hat{k} \] ### Step 2: Calculate \(\vec{b_2} - \vec{b_1}\) \[ \vec{b_2} - \vec{b_1} = (2\hat{i} + \hat{j} + 2\hat{k}) - (\hat{i} - \hat{j} + \hat{k}) \] \[ = (2 - 1)\hat{i} + (1 + 1)\hat{j} + (2 - 1)\hat{k} \] \[ = \hat{i} + 2\hat{j} + \hat{k} \] ### Step 3: Calculate \(\vec{b_1} \times \vec{b_2}\) Using the determinant method: \[ \vec{b_1} \times \vec{b_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 1 \\ 2 & 1 & 2 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 1 \\ 2 & 2 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & -1 \\ 2 & 1 \end{vmatrix} \] \[ = \hat{i}((-1)(2) - (1)(1)) - \hat{j}((1)(2) - (1)(2)) + \hat{k}((1)(1) - (-1)(2)) \] \[ = \hat{i}(-2 - 1) - \hat{j}(2 - 2) + \hat{k}(1 + 2) \] \[ = -3\hat{i} + 0\hat{j} + 3\hat{k} = -3\hat{i} + 3\hat{k} \] ### Step 4: Calculate \(\vec{a_1} \times \vec{a_2}\) Using the determinant method: \[ \vec{a_1} \times \vec{a_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 1 \\ 2 & -1 & -1 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} 2 & 1 \\ -1 & -1 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 1 \\ 2 & -1 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 2 \\ 2 & -1 \end{vmatrix} \] \[ = \hat{i}((2)(-1) - (1)(-1)) - \hat{j}((1)(-1) - (1)(2)) + \hat{k}((1)(-1) - (2)(2)) \] \[ = \hat{i}(-2 + 1) - \hat{j}(-1 - 2) + \hat{k}(-1 - 4) \] \[ = -\hat{i} + 3\hat{j} - 5\hat{k} \] ### Step 5: Calculate the dot product \((\vec{b_1} \times \vec{b_2}) \cdot (\vec{a_1} \times \vec{a_2})\) \[ (-3\hat{i} + 3\hat{k}) \cdot (-\hat{i} + 3\hat{j} - 5\hat{k}) = (-3)(-1) + (0)(3) + (3)(-5) \] \[ = 3 + 0 - 15 = -12 \] ### Step 6: Calculate the shortest distance between lines \(L_1\) and \(L_2\) Using the formula for the shortest distance: \[ d = \frac{|(\vec{a_2} - \vec{a_1}) \cdot (\vec{b_1} \times \vec{b_2})|}{|\vec{b_1} \times \vec{b_2}|} \] First, calculate \(\vec{a_2} - \vec{a_1}\): \[ \vec{a_2} - \vec{a_1} = \hat{i} - 3\hat{j} - 2\hat{k} \] Now, calculate the dot product: \[ (\hat{i} - 3\hat{j} - 2\hat{k}) \cdot (-3\hat{i} + 3\hat{k}) = (1)(-3) + (-3)(0) + (-2)(3) = -3 + 0 - 6 = -9 \] Now, calculate the magnitude of \(\vec{b_1} \times \vec{b_2}\): \[ |\vec{b_1} \times \vec{b_2}| = \sqrt{(-3)^2 + 0^2 + 3^2} = \sqrt{9 + 0 + 9} = \sqrt{18} = 3\sqrt{2} \] Finally, calculate the shortest distance: \[ d = \frac{| -9 |}{3\sqrt{2}} = \frac{9}{3\sqrt{2}} = \frac{3}{\sqrt{2}} = \frac{3\sqrt{2}}{2} \] ### Final Answers: 1. \(\vec{a_2} - \vec{a_1} = \hat{i} - 3\hat{j} - 2\hat{k}\) 2. \(\vec{b_2} - \vec{b_1} = \hat{i} + 2\hat{j} + \hat{k}\) 3. \(\vec{b_1} \times \vec{b_2} = -3\hat{i} + 3\hat{k}\) 4. \(\vec{a_1} \times \vec{a_2} = -\hat{i} + 3\hat{j} - 5\hat{k}\) 5. \((\vec{b_1} \times \vec{b_2}) \cdot (\vec{a_1} \times \vec{a_2}) = -12\) 6. Shortest distance \(d = \frac{3\sqrt{2}}{2}\)
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise EXERCISE 11 (D) (LONG ANSWER TYPE QUESTIONS(II) )|10 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise EXERCISE 11 (E) (SHORT ANSWER TYPE QUESTIONS )|23 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise EXERCISE 11 (C) (LONG ANSWER TYPE QUESTIONS(II) )|8 Videos
  • RELATIONS AND FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (1)|12 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise CHAPTER TEST 10|12 Videos

Similar Questions

Explore conceptually related problems

Find the shortest distance betwee the lines : vec(r) = (hati + 2 hatj + hatk ) + lambda ( hati - hatj + hatk) and vec(r) = 2 hati - hatj - hakt + mu (2 hati + hatj + 2 hatk) .

Determine whether or not the following pairs of lines intersect : vec(r) = (hati - 2 hatj + 3 hatk) + lambda (- hati + hatj - 2 hatk) and vec(r) = ( hati - hatj - hatk) + mu (hati + 2 hatj - 2 hatk) .

Find the vector and catesian equations of the plane containing the lines : vec(r) = 2 hati + hatj - 3 hatk + lambda (hati + 2 hatj + 5 hatk ) and vec(r) = 3 hati + 3 hatj - 7 hatk + mu (3 hati - 2 hatj + 5 hatk ) .

Find the vector and cartesian equations of the plane containing the lines : vec(r) = hati + 2 hatj - 4 hatk + lambda (2 hati + 3 hatj + 6 hatk) and vec(r) = 3 hati + 3 hatj - 5 hatk + mu (-2 hatj + 3 hatj + 8 hatk) .

Find the shortest distance between the lines whose vector equations are : vec(r) = (hati + 2 hatj + 3 hatk ) + lambda (hati -3 hatj + 2 hatk) and vec(r) = 4 hati + 5 hatj + 6 hatk + mu (2 hati + 3 hatj + hatk) .

Find the shortest distance between lines: vec(r) = 6 hati + 2 hatj + 2 hatk + lambda ( hati - 2 hatj + 2 hatk) and vec(r) = -4 hati - hatk + mu (3 hati - 2 hatj - 2 hatk) .

If vec(a) = hati - 2hatj - 3hatk, vec(b) = 2 hati - hatj - hatk and vec(c) = hati +3 hatj - 2hatk find (vec(a) xx vec(b)) xx vec(c)

Find the angle between the line vecr = (hati +2hatj -hatk ) +lambda (hati - hatj +hatk) and vecr cdot (2hati - hatj +hatk) = 4.

Find the angle between the following pairs of lines : (i) vec(r) = 2 hati - 5 hatj + hatk + lambda (3 hati + 2 hatj + 6 hatk ) and vec(r) = 7 hati - 6 hatk + mu (hati + 2 hatj + 2 hatk) (ii) vec(r) = 3 hati + hatj - 2 hatk + lambda (hati - hatj - 2 hatk ) and vec(r) = 2 hati - hatj - 56 hatk + mu (3 hati - 5 hatj - 4 hatk) .

Angle between the planes: (i) vec(r). (hati - 2 hatj - hatk) = 1 and vec(r). (3 hati - 6 hatj + 2 hatk) = 0 (ii) vec(r). (2 hati + 2 hatj - 3 hatk ) = 5 and vec(r) . ( 3 hati - 3 hatj + 5 hatk ) = 3