Home
Class 12
MATHS
Find the shortest distance between the f...

Find the shortest distance between the following (6 -7) lines whose vector equations are :
`(i) vec(r) = (1 -t) hati + (t - 2) hatj + (3 - 2t) hatk`
and `vec(r) = (s + 1) hat(i) + (2s - 1) hatj - (2s + 1) hatk`
(ii) `vec(r) = (3 -t) hati + (4 + 2t) hatj + (t - 2) hatk`
and `vec(r) = (1 + s) hati + (3s - 7 ) hatj + (2s -2) hatk. `
where t and s are scalars.

Text Solution

AI Generated Solution

The correct Answer is:
To find the shortest distance between the given lines, we will follow a systematic approach using the formula for the shortest distance between two skew lines. ### Step-by-Step Solution #### Part (i) 1. **Identify the vector equations of the lines:** - Line 1: \(\vec{r_1} = (1 - t) \hat{i} + (t - 2) \hat{j} + (3 - 2t) \hat{k}\) - Line 2: \(\vec{r_2} = (s + 1) \hat{i} + (2s - 1) \hat{j} - (2s + 1) \hat{k}\) 2. **Convert the vector equations into standard form:** - For Line 1: - Point \(A = (1, -2, 3)\) (when \(t=0\)) - Direction vector \(B = (-1, 1, -2)\) (coefficients of \(t\)) - For Line 2: - Point \(C = (1, -1, -1)\) (when \(s=0\)) - Direction vector \(D = (1, 2, -2)\) (coefficients of \(s\)) 3. **Calculate \( \vec{C} - \vec{A} \):** \[ \vec{C} - \vec{A} = (1 - 1) \hat{i} + (-1 + 2) \hat{j} + (-1 - 3) \hat{k} = (0) \hat{i} + (1) \hat{j} + (-4) \hat{k} = \hat{j} - 4\hat{k} \] 4. **Calculate the cross product \( \vec{B} \times \vec{D} \):** \[ \vec{B} = (-1, 1, -2), \quad \vec{D} = (1, 2, -2) \] \[ \vec{B} \times \vec{D} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & 1 & -2 \\ 1 & 2 & -2 \end{vmatrix} \] \[ = \hat{i} \left(1 \cdot (-2) - (-2) \cdot 2\right) - \hat{j} \left((-1) \cdot (-2) - (-2) \cdot 1\right) + \hat{k} \left((-1) \cdot 2 - 1 \cdot 1\right) \] \[ = \hat{i}(-2 + 4) - \hat{j}(2 - 2) + \hat{k}(-2 - 1) = 2\hat{i} + 0\hat{j} - 3\hat{k} = 2\hat{i} - 3\hat{k} \] 5. **Calculate the magnitude of \( \vec{B} \times \vec{D} \):** \[ |\vec{B} \times \vec{D}| = \sqrt{2^2 + 0^2 + (-3)^2} = \sqrt{4 + 0 + 9} = \sqrt{13} \] 6. **Calculate the dot product \( (\vec{C} - \vec{A}) \cdot (\vec{B} \times \vec{D}) \):** \[ (\vec{C} - \vec{A}) \cdot (\vec{B} \times \vec{D}) = (0, 1, -4) \cdot (2, 0, -3) = 0 \cdot 2 + 1 \cdot 0 + (-4) \cdot (-3) = 12 \] 7. **Calculate the shortest distance \(D\):** \[ D = \frac{|(\vec{C} - \vec{A}) \cdot (\vec{B} \times \vec{D})|}{|\vec{B} \times \vec{D}|} = \frac{12}{\sqrt{13}} \] #### Part (ii) 1. **Identify the vector equations of the lines:** - Line 1: \(\vec{r_1} = (3 - t) \hat{i} + (4 + 2t) \hat{j} + (t - 2) \hat{k}\) - Line 2: \(\vec{r_2} = (1 + s) \hat{i} + (3s - 7) \hat{j} + (2s - 2) \hat{k}\) 2. **Convert the vector equations into standard form:** - For Line 1: - Point \(A = (3, 4, -2)\) (when \(t=0\)) - Direction vector \(B = (-1, 2, 1)\) (coefficients of \(t\)) - For Line 2: - Point \(C = (1, -7, -2)\) (when \(s=0\)) - Direction vector \(D = (1, 3, 2)\) (coefficients of \(s\)) 3. **Calculate \( \vec{C} - \vec{A} \):** \[ \vec{C} - \vec{A} = (1 - 3) \hat{i} + (-7 - 4) \hat{j} + (-2 + 2) \hat{k} = (-2) \hat{i} + (-11) \hat{j} + (0) \hat{k} = -2\hat{i} - 11\hat{j} \] 4. **Calculate the cross product \( \vec{B} \times \vec{D} \):** \[ \vec{B} = (-1, 2, 1), \quad \vec{D} = (1, 3, 2) \] \[ \vec{B} \times \vec{D} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & 2 & 1 \\ 1 & 3 & 2 \end{vmatrix} \] \[ = \hat{i} \left(2 \cdot 2 - 1 \cdot 3\right) - \hat{j} \left((-1) \cdot 2 - 1 \cdot 1\right) + \hat{k} \left((-1) \cdot 3 - 2 \cdot 1\right) \] \[ = \hat{i}(4 - 3) - \hat{j}(-2 - 1) + \hat{k}(-3 - 2) = 1\hat{i} + 3\hat{j} - 5\hat{k} \] 5. **Calculate the magnitude of \( \vec{B} \times \vec{D} \):** \[ |\vec{B} \times \vec{D}| = \sqrt{1^2 + 3^2 + (-5)^2} = \sqrt{1 + 9 + 25} = \sqrt{35} \] 6. **Calculate the dot product \( (\vec{C} - \vec{A}) \cdot (\vec{B} \times \vec{D}) \):** \[ (\vec{C} - \vec{A}) \cdot (\vec{B} \times \vec{D}) = (-2, -11, 0) \cdot (1, 3, -5) = (-2) \cdot 1 + (-11) \cdot 3 + 0 \cdot (-5) = -2 - 33 + 0 = -35 \] 7. **Calculate the shortest distance \(D\):** \[ D = \frac{|(\vec{C} - \vec{A}) \cdot (\vec{B} \times \vec{D})|}{|\vec{B} \times \vec{D}|} = \frac{35}{\sqrt{35}} = \sqrt{35} \] ### Final Answers - Shortest distance between the first pair of lines: \(\frac{12}{\sqrt{13}}\) - Shortest distance between the second pair of lines: \(\sqrt{35}\)
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise EXERCISE 11 (D) (LONG ANSWER TYPE QUESTIONS(II) )|10 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise EXERCISE 11 (E) (SHORT ANSWER TYPE QUESTIONS )|23 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise EXERCISE 11 (C) (LONG ANSWER TYPE QUESTIONS(II) )|8 Videos
  • RELATIONS AND FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (1)|12 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise CHAPTER TEST 10|12 Videos

Similar Questions

Explore conceptually related problems

Find the shortest distance between the following lines whose vector equations are: vec r=(1-t)hat i+(t-2)hat j+(3-2t)hat k and vec r=(s+1)hat i+(2s-1)hat j-(2s+1)hat k

Find the shortest distance between the following (1-4) lines whose vector equations are : 1. vec(r) = hati + hatj + lambda (2 hati - hatj + hatk ) and vec(r) = 2 hati + hatj - hatk + mu (3 hati - 5 hatj + 2 hatk) .

Find the shortest distance between the following (1-4) lines whose vector equations are : (i) vec(r) = (lambda - 1) hati + (lambda -1) hatj - (1 + lambda ) hatk and vec(r) = (1 - mu) hat(i) + (2 mu - 1) hatj + (mu + 2) hatk (ii) vec(r) = (1 + lambda) hati + (2 - lambda) hatj + (1 + lambda) hatk and vec(r) = 2 (1 + mu) hati - (1 - mu) hatj + (-1 + 2mu ) hatk .

Find the shortest distance between the lines whose vector equations are quad vec r=(1-t)hat i+(t-2)hat j+(3-2t)hat k and vec r=(s+1)hat i+(2s-1)hat j-(2s+1)hat k

Find the shortest distance between the lines whose vector equations are : vec(r) = (hati + 2 hatj + 3 hatk ) + lambda (hati -3 hatj + 2 hatk) and vec(r) = 4 hati + 5 hatj + 6 hatk + mu (2 hati + 3 hatj + hatk) .

Find the shortest distance between the two lines whose vector equations are given by: vecr=(3-t)hati+(4+2t)hatj+(t-2)hatk and vecr=(1+s)hati+(3s-7)hatj+(2s-2)hatk

Find the shortest distance between the following lines whose vector equations are : (i) vec(r) = ( 8 + 3 lambda) hati - (9 + 16 lambda) hatj + (10 + 7 lambda) hatk and vec(r) = 15 hati + 29 hatj + 5 hatk + mu (3 hati + 8 hatj - 5 hatk) (ii) vec(r) = 3 hati - 15 hatj + 9 hatk + lambda (2 hati - 7 hatj + 5 hatk) and vec(r) = (2mu - 1) hati + (1 + mu ) hatj + (9 - 3mu ) hatk .

Find the shortest distance between the lines l_(1)and l_(1) whose vector equations are vecr=(hati+hatj) + lambda (3hati + 4hatj - 2hatk) …(i) and vecr=(2hati+3hatj) + mu (6hati + 8hatj - 4hatk) …(ii)

Find the Cartesian equations of the following planes whose vector equations are: vecr.[(s-2t)hati+(3-t)hatj+(2s+t)hatk]=15