Home
Class 12
MATHS
Find the shortest distance between the f...

Find the shortest distance between the following lines whose vector equations are :
(i) `vec(r) = ( 8 + 3 lambda) hati - (9 + 16 lambda) hatj + (10 + 7 lambda) hatk `
and `vec(r) = 15 hati + 29 hatj + 5 hatk + mu (3 hati + 8 hatj - 5 hatk)`
(ii) `vec(r) = 3 hati - 15 hatj + 9 hatk + lambda (2 hati - 7 hatj + 5 hatk)`
`and vec(r) = (2mu - 1) hati + (1 + mu ) hatj + (9 - 3mu ) hatk`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the shortest distance between the given lines, we can use the formula for the shortest distance between two skew lines represented in vector form: For lines given by: 1. \(\vec{r_1} = \vec{a} + \lambda \vec{b}\) 2. \(\vec{r_2} = \vec{c} + \mu \vec{d}\) The shortest distance \(D\) between the two lines is given by: \[ D = \frac{|(\vec{c} - \vec{a}) \cdot (\vec{b} \times \vec{d})|}{|\vec{b} \times \vec{d}|} \] ### Part (i) **Step 1: Identify the vectors from the equations.** From the first line: \[ \vec{r_1} = (8 + 3\lambda) \hat{i} - (9 + 16\lambda) \hat{j} + (10 + 7\lambda) \hat{k} \] We can identify: - \(\vec{a} = 8\hat{i} - 9\hat{j} + 10\hat{k}\) - \(\vec{b} = 3\hat{i} - 16\hat{j} + 7\hat{k}\) From the second line: \[ \vec{r_2} = 15\hat{i} + 29\hat{j} + 5\hat{k} + \mu(3\hat{i} + 8\hat{j} - 5\hat{k}) \] We can identify: - \(\vec{c} = 15\hat{i} + 29\hat{j} + 5\hat{k}\) - \(\vec{d} = 3\hat{i} + 8\hat{j} - 5\hat{k}\) **Step 2: Calculate \(\vec{c} - \vec{a}\).** \[ \vec{c} - \vec{a} = (15 - 8)\hat{i} + (29 + 9)\hat{j} + (5 - 10)\hat{k} = 7\hat{i} + 38\hat{j} - 5\hat{k} \] **Step 3: Calculate \(\vec{b} \times \vec{d}\).** Using the determinant formula: \[ \vec{b} \times \vec{d} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -16 & 7 \\ 3 & 8 & -5 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i}((-16)(-5) - (7)(8)) - \hat{j}((3)(-5) - (7)(3)) + \hat{k}((3)(8) - (-16)(3)) \] \[ = \hat{i}(80 - 56) - \hat{j}(-15 - 21) + \hat{k}(24 + 48) \] \[ = 24\hat{i} + 36\hat{j} + 72\hat{k} \] **Step 4: Calculate the magnitude of \(\vec{b} \times \vec{d}\).** \[ |\vec{b} \times \vec{d}| = \sqrt{24^2 + 36^2 + 72^2} = \sqrt{576 + 1296 + 5184} = \sqrt{7056} = 84 \] **Step 5: Calculate the dot product \((\vec{c} - \vec{a}) \cdot (\vec{b} \times \vec{d})\).** \[ (\vec{c} - \vec{a}) \cdot (\vec{b} \times \vec{d}) = (7\hat{i} + 38\hat{j} - 5\hat{k}) \cdot (24\hat{i} + 36\hat{j} + 72\hat{k}) \] \[ = 7 \cdot 24 + 38 \cdot 36 - 5 \cdot 72 = 168 + 1368 - 360 = 1176 \] **Step 6: Calculate the shortest distance \(D\).** \[ D = \frac{|1176|}{84} = 14 \] ### Part (ii) **Step 1: Identify the vectors from the equations.** From the first line: \[ \vec{r_1} = (3 + 2\lambda) \hat{i} - (15 - 7\lambda) \hat{j} + (9 + 5\lambda) \hat{k} \] We can identify: - \(\vec{a} = 3\hat{i} - 15\hat{j} + 9\hat{k}\) - \(\vec{b} = 2\hat{i} - 7\hat{j} + 5\hat{k}\) From the second line: \[ \vec{r_2} = (2\mu - 1) \hat{i} + (1 + \mu) \hat{j} + (9 - 3\mu) \hat{k} \] We can identify: - \(\vec{c} = -\hat{i} + \hat{j} + 9\hat{k}\) - \(\vec{d} = 2\hat{i} + \hat{j} - 3\hat{k}\) **Step 2: Calculate \(\vec{c} - \vec{a}\).** \[ \vec{c} - \vec{a} = (-1 - 3)\hat{i} + (1 + 15)\hat{j} + (9 - 9)\hat{k} = -4\hat{i} + 16\hat{j} \] **Step 3: Calculate \(\vec{b} \times \vec{d}\).** Using the determinant formula: \[ \vec{b} \times \vec{d} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -7 & 5 \\ 2 & 1 & -3 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i}((-7)(-3) - (5)(1)) - \hat{j}((2)(-3) - (5)(2)) + \hat{k}((2)(1) - (-7)(2)) \] \[ = \hat{i}(21 - 5) - \hat{j}(-6 - 10) + \hat{k}(2 + 14) \] \[ = 16\hat{i} + 16\hat{j} + 16\hat{k} \] **Step 4: Calculate the magnitude of \(\vec{b} \times \vec{d}\).** \[ |\vec{b} \times \vec{d}| = \sqrt{16^2 + 16^2 + 16^2} = \sqrt{768} = 16\sqrt{3} \] **Step 5: Calculate the dot product \((\vec{c} - \vec{a}) \cdot (\vec{b} \times \vec{d})\).** \[ (\vec{c} - \vec{a}) \cdot (\vec{b} \times \vec{d}) = (-4\hat{i} + 16\hat{j}) \cdot (16\hat{i} + 16\hat{j} + 16\hat{k}) \] \[ = -4 \cdot 16 + 16 \cdot 16 + 0 = -64 + 256 = 192 \] **Step 6: Calculate the shortest distance \(D\).** \[ D = \frac{|192|}{16\sqrt{3}} = \frac{12}{\sqrt{3}} = 4\sqrt{3} \] ### Final Answers 1. The shortest distance for part (i) is **14**. 2. The shortest distance for part (ii) is **\(4\sqrt{3}\)**.
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise EXERCISE 11 (D) (LONG ANSWER TYPE QUESTIONS(II) )|10 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise EXERCISE 11 (E) (SHORT ANSWER TYPE QUESTIONS )|23 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise EXERCISE 11 (C) (LONG ANSWER TYPE QUESTIONS(II) )|8 Videos
  • RELATIONS AND FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (1)|12 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise CHAPTER TEST 10|12 Videos

Similar Questions

Explore conceptually related problems

Find the shortest distance between the following (1-4) lines whose vector equations are : 1. vec(r) = hati + hatj + lambda (2 hati - hatj + hatk ) and vec(r) = 2 hati + hatj - hatk + mu (3 hati - 5 hatj + 2 hatk) .

Find the shortest distance between the following (1-4) lines whose vector equations are : (i) vec(r) = (lambda - 1) hati + (lambda -1) hatj - (1 + lambda ) hatk and vec(r) = (1 - mu) hat(i) + (2 mu - 1) hatj + (mu + 2) hatk (ii) vec(r) = (1 + lambda) hati + (2 - lambda) hatj + (1 + lambda) hatk and vec(r) = 2 (1 + mu) hati - (1 - mu) hatj + (-1 + 2mu ) hatk .

Find the shortest distance between the lines whose vector equations are : vec(r) = (hati + 2 hatj + 3 hatk ) + lambda (hati -3 hatj + 2 hatk) and vec(r) = 4 hati + 5 hatj + 6 hatk + mu (2 hati + 3 hatj + hatk) .

Find the angle between the following pairs of lines : (i) vec(r) = 2 hati - 5 hatj + hatk + lambda (3 hati + 2 hatj + 6 hatk ) and vec(r) = 7 hati - 6 hatk + mu (hati + 2 hatj + 2 hatk) (ii) vec(r) = 3 hati + hatj - 2 hatk + lambda (hati - hatj - 2 hatk ) and vec(r) = 2 hati - hatj - 56 hatk + mu (3 hati - 5 hatj - 4 hatk) .

Find the shortest distance betwee the lines : vec(r) = (hati + 2 hatj + hatk ) + lambda ( hati - hatj + hatk) and vec(r) = 2 hati - hatj - hakt + mu (2 hati + hatj + 2 hatk) .

Find the shortest distance between lines: vec(r) = 6 hati + 2 hatj + 2 hatk + lambda ( hati - 2 hatj + 2 hatk) and vec(r) = -4 hati - hatk + mu (3 hati - 2 hatj - 2 hatk) .

Find the shortest distance between the lines l_(1)and l_(1) whose vector equations are vecr=(hati+hatj) + lambda (3hati + 4hatj - 2hatk) …(i) and vecr=(2hati+3hatj) + mu (6hati + 8hatj - 4hatk) …(ii)

Find the shortest distance between the lines: (i) vec(r) = 3 hati + 8 hat(j) + 3 hatk + lambda (3 hati - hatj + hatk) and vec(r) = - 3 hat(i) - 7 hatj + 6 hatk + mu (-3 hati + 2 hatj + 4 hatk ) (ii) ( hati - hatj + 2 hatk) + lambda ( -2 hati + hatj + 3 hatk ) and (2 hati + 3 hatj - hatk) + mu (3 hati - 2 hatj + 2 hatk). (iii) vec(r) = (hati + 2 hatj + 3 hatk) + lambda ( hati - 3 hatj + 2 hatk ) and vec(r) = (4 hati + 5 hatj + 6 hatk) + mu (2 hati + 3 hatj + hatk) .