Home
Class 12
MATHS
Find the S.D. between the lines : (i) ...

Find the S.D. between the lines :
`(i) (x)/(2) = (y)/(-3) = (z)/(1) and (x -2)/(3) = (y - 1)/(-5) = (z + 4)/(2)`
(ii) `(x -1)/(2) = (y - 2)/(3) = (z - 3)/(2) and (x + 1)/(3) = (y - 1)/(2) = (z - 1)/(5)`
(iii) ` (x + 1)/(7) = (y + 1)/(-6) = (z + 1)/(1) and (x -3)/(1) = (y -5)/(-2) = (z - 7)/(1)`
(iv) `(x - 3)/(3) = (y - 8)/(-1) = (z-3)/(1) and (x + 3)/(-3) = (y +7)/(2) = (z -6)/(4) ` .

Text Solution

AI Generated Solution

The correct Answer is:
To find the shortest distance between two lines in three-dimensional geometry, we can use the formula: \[ D_{min} = \frac{|(C - A) \cdot (B \times D)|}{|B \times D|} \] where: - \(A\) and \(C\) are points on the first and second lines, respectively. - \(B\) and \(D\) are direction vectors of the first and second lines, respectively. - \(\cdot\) denotes the dot product. - \(\times\) denotes the cross product. ### Step-by-step Solution: #### (i) For the lines: 1. **Line 1**: \(\frac{x}{2} = \frac{y}{-3} = \frac{z}{1}\) - Point \(A(0, 0, 0)\) (when \(t = 0\)) - Direction vector \(B = (2, -3, 1)\) 2. **Line 2**: \(\frac{x - 2}{3} = \frac{y - 1}{-5} = \frac{z + 4}{2}\) - Point \(C(2, 1, -4)\) (when \(s = 0\)) - Direction vector \(D = (3, -5, 2)\) 3. **Calculate \(C - A\)**: \[ C - A = (2 - 0, 1 - 0, -4 - 0) = (2, 1, -4) \] 4. **Calculate \(B \times D\)**: \[ B \times D = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -3 & 1 \\ 3 & -5 & 2 \end{vmatrix} = \hat{i}((-3)(2) - (1)(-5)) - \hat{j}((2)(2) - (1)(3)) + \hat{k}((2)(-5) - (-3)(3)) \] \[ = \hat{i}(-6 + 5) - \hat{j}(4 - 3) + \hat{k}(-10 + 9) = \hat{i}(-1) - \hat{j}(1) + \hat{k}(-1) = (-1, -1, -1) \] 5. **Calculate \(|B \times D|\)**: \[ |B \times D| = \sqrt{(-1)^2 + (-1)^2 + (-1)^2} = \sqrt{3} \] 6. **Calculate \((C - A) \cdot (B \times D)\)**: \[ (C - A) \cdot (B \times D) = (2, 1, -4) \cdot (-1, -1, -1) = 2(-1) + 1(-1) + (-4)(-1) = -2 - 1 + 4 = 1 \] 7. **Calculate \(D_{min}\)**: \[ D_{min} = \frac{|1|}{\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3} \]
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise EXERCISE 11 (D) (LONG ANSWER TYPE QUESTIONS(II) )|10 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise EXERCISE 11 (E) (SHORT ANSWER TYPE QUESTIONS )|23 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise EXERCISE 11 (C) (LONG ANSWER TYPE QUESTIONS(II) )|8 Videos
  • RELATIONS AND FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (1)|12 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise CHAPTER TEST 10|12 Videos

Similar Questions

Explore conceptually related problems

Find the distance between the parallel lines (x)/(2) =(y)/(-1) =(z)/(2) and (x-1)/(2) = (y-1)/(-1) = (z-3)/(2) .

Show that the lines : (i) (x -5)/(7) = (y + 2)/(-5) = (z)/(1) " " and (x)/(1) = (y)/(2) = (z)/(3) (ii) (x - 3)/(2) = (y + 1)/(-3) = (z - 2)/(4) and (x + 2)/(2) = (y - 4)/(4) = (z + 5)/(2) are perpendicular to each other .

Find the angle between the line (x)/(1)=(y)/(2)=(z)/(3) and (x+1)/(2)=(y-3)/(-7)=(z+2)/(4)

Find the angle between the lines (5-x)/(3)=(y+3)/(-4) ,z=7 " and " (x)/(1) =(1-y)/(2)=(z-6)/(2)

Show that the lines (x-1)/(2)=(y-2)/(y-1)=(z-3)/(4) and (x-4)/(5)=(y-1)/(2)=z intersect

Find the shortest distance between the lines given by (x-2)/(3)=(y-5)/(-2)=(z-1)/(1)and(x+1)/(2)=(y+2)/(-6)=(z-3)/(1)

Find the angle between the following pairs of line: (x-5)/1=(2y+6)/(-2)=(z-3)/1a n d(x-2)/3=(y+1)/4=(z-6)/5