Home
Class 12
MATHS
Determine whether or not the following p...

Determine whether or not the following pairs of lines intersect :
`vec(r) = (hati - 2 hatj + 3 hatk) + lambda (- hati + hatj - 2 hatk)`
and `vec(r) = ( hati - hatj - hatk) + mu (hati + 2 hatj - 2 hatk)`.

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the two given lines intersect, we can use the method of finding the shortest distance between the two lines. If the shortest distance is zero, then the lines intersect; otherwise, they do not. ### Step-by-step Solution: 1. **Identify the lines in vector form:** The first line is given by: \[ \vec{r_1} = (\hat{i} - 2\hat{j} + 3\hat{k}) + \lambda (-\hat{i} + \hat{j} - 2\hat{k}) \] The second line is given by: \[ \vec{r_2} = (\hat{i} - \hat{j} - \hat{k}) + \mu (\hat{i} + 2\hat{j} - 2\hat{k}) \] 2. **Extract points and direction vectors:** From the equations, we can identify: - For the first line: - Point \( \vec{a} = (1, -2, 3) \) - Direction vector \( \vec{b} = (-1, 1, -2) \) - For the second line: - Point \( \vec{c} = (1, -1, -1) \) - Direction vector \( \vec{d} = (1, 2, -2) \) 3. **Calculate the vector \( \vec{c} - \vec{a} \):** \[ \vec{c} - \vec{a} = (1 - 1, -1 + 2, -1 - 3) = (0, 1, -4) \] 4. **Calculate the cross product \( \vec{b} \times \vec{d} \):** \[ \vec{b} = (-1, 1, -2), \quad \vec{d} = (1, 2, -2) \] Using the determinant to find the cross product: \[ \vec{b} \times \vec{d} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & 1 & -2 \\ 1 & 2 & -2 \end{vmatrix} = \hat{i} \begin{vmatrix} 1 & -2 \\ 2 & -2 \end{vmatrix} - \hat{j} \begin{vmatrix} -1 & -2 \\ 1 & -2 \end{vmatrix} + \hat{k} \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} \] Calculating the determinants: \[ = \hat{i} (1 \cdot -2 - (-2) \cdot 2) - \hat{j} (-1 \cdot -2 - (-2) \cdot 1) + \hat{k} (-1 \cdot 2 - 1 \cdot 1) \] \[ = \hat{i} (-2 + 4) - \hat{j} (2 - 2) + \hat{k} (-2 - 1) \] \[ = 2\hat{i} + 0\hat{j} - 3\hat{k} = (2, 0, -3) \] 5. **Calculate the dot product \( (\vec{c} - \vec{a}) \cdot (\vec{b} \times \vec{d}) \):** \[ \vec{c} - \vec{a} = (0, 1, -4), \quad \vec{b} \times \vec{d} = (2, 0, -3) \] \[ (0, 1, -4) \cdot (2, 0, -3) = 0 \cdot 2 + 1 \cdot 0 + (-4) \cdot (-3) = 0 + 0 + 12 = 12 \] 6. **Conclusion:** Since the dot product is not zero (\(12 \neq 0\)), the lines do not intersect. ### Final Answer: The two lines do not intersect.
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise EXERCISE 11 (D) (LONG ANSWER TYPE QUESTIONS(II) )|10 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise EXERCISE 11 (E) (SHORT ANSWER TYPE QUESTIONS )|23 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise EXERCISE 11 (C) (LONG ANSWER TYPE QUESTIONS(II) )|8 Videos
  • RELATIONS AND FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (1)|12 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise CHAPTER TEST 10|12 Videos

Similar Questions

Explore conceptually related problems

Find the angle between the following pair of lines : vec(r) = hati + hatj - hatk + lambda (hati - 3 hatj + 2 hatk) and vec(r) = 2 hat(i) - hat(j) + mu (3 hat(i) + hatj - 2 hatk) .

Find the shortest distance between lines: vec(r) = 6 hati + 2 hatj + 2 hatk + lambda ( hati - 2 hatj + 2 hatk) and vec(r) = -4 hati - hatk + mu (3 hati - 2 hatj - 2 hatk) .

Find the angle between the following pairs of lines : (i) vec(r) = 2 hati - 5 hatj + hatk + lambda (3 hati + 2 hatj + 6 hatk ) and vec(r) = 7 hati - 6 hatk + mu (hati + 2 hatj + 2 hatk) (ii) vec(r) = 3 hati + hatj - 2 hatk + lambda (hati - hatj - 2 hatk ) and vec(r) = 2 hati - hatj - 56 hatk + mu (3 hati - 5 hatj - 4 hatk) .

Find the shortest distance betwee the lines : vec(r) = (hati + 2 hatj + hatk ) + lambda ( hati - hatj + hatk) and vec(r) = 2 hati - hatj - hakt + mu (2 hati + hatj + 2 hatk) .

Determine whether or not the following pairs of lines intersect : vec(r) = (2 lambda + 1) hati - (lambda + 1) hatj + (lambda + 1) hatk. and vec(r) = (3 mu + 2)hati - (5mu + 5 ) hatj + (2 mu - 1) hatk.

Find the shortest distance between the lines whose vector equations are : vec(r) = (hati + 2 hatj + 3 hatk ) + lambda (hati -3 hatj + 2 hatk) and vec(r) = 4 hati + 5 hatj + 6 hatk + mu (2 hati + 3 hatj + hatk) .

Find the vector and catesian equations of the plane containing the lines : vec(r) = 2 hati + hatj - 3 hatk + lambda (hati + 2 hatj + 5 hatk ) and vec(r) = 3 hati + 3 hatj - 7 hatk + mu (3 hati - 2 hatj + 5 hatk ) .

Find the shortest distance between the following (1-4) lines whose vector equations are : 1. vec(r) = hati + hatj + lambda (2 hati - hatj + hatk ) and vec(r) = 2 hati + hatj - hatk + mu (3 hati - 5 hatj + 2 hatk) .