Home
Class 12
MATHS
Determine whether or not the following p...

Determine whether or not the following pairs of lines intersect :
`vec(r) = (2 lambda + 1) hati - (lambda + 1) hatj + (lambda + 1) hatk.`
and `vec(r) = (3 mu + 2)hati - (5mu + 5 ) hatj + (2 mu - 1) hatk. `

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the given pairs of lines intersect, we will follow these steps: ### Step 1: Write the equations of the lines in vector form The first line is given as: \[ \vec{r_1} = (2\lambda + 1) \hat{i} - (\lambda + 1) \hat{j} + (\lambda + 1) \hat{k} \] The second line is given as: \[ \vec{r_2} = (3\mu + 2) \hat{i} - (5\mu + 5) \hat{j} + (2\mu - 1) \hat{k} \] ### Step 2: Identify the components of the lines From the first line, we can identify: - Point \( A \) (constant part): \( \vec{A} = \hat{i} + (-1) \hat{j} + (1) \hat{k} = \hat{i} - \hat{j} + \hat{k} \) - Direction vector \( \vec{B} = (2 \hat{i} - \hat{j} + \hat{k}) \) From the second line, we can identify: - Point \( C \) (constant part): \( \vec{C} = 2 \hat{i} - 5 \hat{j} - 1 \hat{k} \) - Direction vector \( \vec{D} = (3 \hat{i} - 5 \hat{j} + 2 \hat{k}) \) ### Step 3: Calculate the shortest distance between the two lines The formula for the shortest distance \( d_{\text{min}} \) between two skew lines is given by: \[ d_{\text{min}} = \frac{|\vec{C} - \vec{A} \cdot (\vec{B} \times \vec{D})|}{|\vec{B} \times \vec{D}|} \] ### Step 4: Calculate \( \vec{C} - \vec{A} \) Calculating \( \vec{C} - \vec{A} \): \[ \vec{C} - \vec{A} = (2 \hat{i} - 5 \hat{j} - 1 \hat{k}) - (1 \hat{i} - 1 \hat{j} + 1 \hat{k}) = (2 - 1) \hat{i} + (-5 + 1) \hat{j} + (-1 - 1) \hat{k} = 1 \hat{i} - 4 \hat{j} - 2 \hat{k} \] ### Step 5: Calculate \( \vec{B} \times \vec{D} \) Now we need to calculate the cross product \( \vec{B} \times \vec{D} \): \[ \vec{B} = 2 \hat{i} - \hat{j} + \hat{k}, \quad \vec{D} = 3 \hat{i} - 5 \hat{j} + 2 \hat{k} \] Using the determinant to calculate the cross product: \[ \vec{B} \times \vec{D} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -1 & 1 \\ 3 & -5 & 2 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} -1 & 1 \\ -5 & 2 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & 1 \\ 3 & 2 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & -1 \\ 3 & -5 \end{vmatrix} \] \[ = \hat{i}((-1)(2) - (1)(-5)) - \hat{j}((2)(2) - (1)(3)) + \hat{k}((2)(-5) - (-1)(3)) \] \[ = \hat{i}(-2 + 5) - \hat{j}(4 - 3) + \hat{k}(-10 + 3) \] \[ = 3\hat{i} - 1\hat{j} - 7\hat{k} \] ### Step 6: Calculate the magnitude of \( \vec{B} \times \vec{D} \) Now we calculate the magnitude: \[ |\vec{B} \times \vec{D}| = \sqrt{(3)^2 + (-1)^2 + (-7)^2} = \sqrt{9 + 1 + 49} = \sqrt{59} \] ### Step 7: Calculate the dot product \( \vec{C} - \vec{A} \cdot (\vec{B} \times \vec{D}) \) Now we calculate the dot product: \[ \vec{C} - \vec{A} = 1\hat{i} - 4\hat{j} - 2\hat{k} \] \[ \vec{B} \times \vec{D} = 3\hat{i} - 1\hat{j} - 7\hat{k} \] \[ (1)(3) + (-4)(-1) + (-2)(-7) = 3 + 4 + 14 = 21 \] ### Step 8: Calculate the shortest distance Now substituting back into the distance formula: \[ d_{\text{min}} = \frac{|21|}{\sqrt{59}} \neq 0 \] ### Conclusion Since the shortest distance \( d_{\text{min}} \) is not zero, the two lines do not intersect. ---
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise EXERCISE 11 (D) (LONG ANSWER TYPE QUESTIONS(II) )|10 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise EXERCISE 11 (E) (SHORT ANSWER TYPE QUESTIONS )|23 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise EXERCISE 11 (C) (LONG ANSWER TYPE QUESTIONS(II) )|8 Videos
  • RELATIONS AND FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (1)|12 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise CHAPTER TEST 10|12 Videos

Similar Questions

Explore conceptually related problems

Determine whether or not the following pairs of lines intersect : vec(r) = (hati - 2 hatj + 3 hatk) + lambda (- hati + hatj - 2 hatk) and vec(r) = ( hati - hatj - hatk) + mu (hati + 2 hatj - 2 hatk) .

Find the shortest distance between the following (1-4) lines whose vector equations are : (i) vec(r) = (lambda - 1) hati + (lambda -1) hatj - (1 + lambda ) hatk and vec(r) = (1 - mu) hat(i) + (2 mu - 1) hatj + (mu + 2) hatk (ii) vec(r) = (1 + lambda) hati + (2 - lambda) hatj + (1 + lambda) hatk and vec(r) = 2 (1 + mu) hati - (1 - mu) hatj + (-1 + 2mu ) hatk .

Find the shortest distance between the following lines whose vector equations are : (i) vec(r) = ( 8 + 3 lambda) hati - (9 + 16 lambda) hatj + (10 + 7 lambda) hatk and vec(r) = 15 hati + 29 hatj + 5 hatk + mu (3 hati + 8 hatj - 5 hatk) (ii) vec(r) = 3 hati - 15 hatj + 9 hatk + lambda (2 hati - 7 hatj + 5 hatk) and vec(r) = (2mu - 1) hati + (1 + mu ) hatj + (9 - 3mu ) hatk .

Find the angle between the following pair of lines : vec(r) = hati + hatj - hatk + lambda (hati - 3 hatj + 2 hatk) and vec(r) = 2 hat(i) - hat(j) + mu (3 hat(i) + hatj - 2 hatk) .

Determine whether the following pair of lines intersect: vecr=hati-hatj+lamda(2hati+hatk) and vecr=2hati-hatj+mu(hati+hatj-hatk)

Find the angle between the following pairs of lines : (i) vec(r) = 2 hati - 5 hatj + hatk + lambda (3 hati + 2 hatj + 6 hatk ) and vec(r) = 7 hati - 6 hatk + mu (hati + 2 hatj + 2 hatk) (ii) vec(r) = 3 hati + hatj - 2 hatk + lambda (hati - hatj - 2 hatk ) and vec(r) = 2 hati - hatj - 56 hatk + mu (3 hati - 5 hatj - 4 hatk) .

Determine whether the following pair of lines intersect or not. i. vecr=hati-hatj+lamda(2hati+hatk), vecr=2hati-hatj+mu(hati+hatj-hatk)

Find the shortest distance between the following (1-4) lines whose vector equations are : 1. vec(r) = hati + hatj + lambda (2 hati - hatj + hatk ) and vec(r) = 2 hati + hatj - hatk + mu (3 hati - 5 hatj + 2 hatk) .

Find the vector and catesian equations of the plane containing the lines : vec(r) = 2 hati + hatj - 3 hatk + lambda (hati + 2 hatj + 5 hatk ) and vec(r) = 3 hati + 3 hatj - 7 hatk + mu (3 hati - 2 hatj + 5 hatk ) .