Home
Class 12
MATHS
Determine whether or not the following p...

Determine whether or not the following pairs of lines intersect :
`(x -1)/(2) = (y + 1)/(3) = z , (x + 1)/(5) = (y -2)/(1) =(z -2)/(0)`.

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the given pairs of lines intersect, we can follow these steps: ### Step 1: Write the equations of the lines in parametric form The given lines are: 1. \(\frac{x - 1}{2} = \frac{y + 1}{3} = z\) 2. \(\frac{x + 1}{5} = \frac{y - 2}{1} = \frac{z - 2}{0}\) From the first line, we can express it in parametric form: - Let \(t\) be the parameter, then: - \(x_1 = 1 + 2t\) - \(y_1 = -1 + 3t\) - \(z_1 = t\) From the second line, we can express it in parametric form: - Let \(s\) be the parameter, then: - \(x_2 = -1 + 5s\) - \(y_2 = 2 + s\) - \(z_2 = 2\) ### Step 2: Identify the points and direction ratios From the parametric equations: - For the first line, the point \(A\) is \((1, -1, 0)\) and the direction ratios are \((2, 3, 1)\). - For the second line, the point \(B\) is \((-1, 2, 2)\) and the direction ratios are \((5, 1, 0)\). ### Step 3: Find the vectors Let: - \( \vec{A} = (1, -1, 0) \) - \( \vec{B} = (-1, 2, 2) \) - Direction vector of the first line: \( \vec{b} = (2, 3, 1) \) - Direction vector of the second line: \( \vec{d} = (5, 1, 0) \) ### Step 4: Calculate the vector \( \vec{C} = \vec{B} - \vec{A} \) \[ \vec{C} = \vec{B} - \vec{A} = (-1 - 1, 2 + 1, 2 - 0) = (-2, 3, 2) \] ### Step 5: Calculate \( \vec{b} \times \vec{d} \) To find the cross product \( \vec{b} \times \vec{d} \): \[ \vec{b} \times \vec{d} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 1 \\ 5 & 1 & 0 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i}(3 \cdot 0 - 1 \cdot 1) - \hat{j}(2 \cdot 0 - 1 \cdot 5) + \hat{k}(2 \cdot 1 - 3 \cdot 5) \] \[ = \hat{i}(0 - 1) - \hat{j}(0 - 5) + \hat{k}(2 - 15) \] \[ = -\hat{i} + 5\hat{j} - 13\hat{k} \] Thus, \( \vec{b} \times \vec{d} = (-1, 5, -13) \). ### Step 6: Calculate the magnitude of \( \vec{b} \times \vec{d} \) \[ |\vec{b} \times \vec{d}| = \sqrt{(-1)^2 + 5^2 + (-13)^2} = \sqrt{1 + 25 + 169} = \sqrt{195} \] ### Step 7: Calculate the dot product \( \vec{C} \cdot (\vec{b} \times \vec{d}) \) \[ \vec{C} \cdot (\vec{b} \times \vec{d}) = (-2, 3, 2) \cdot (-1, 5, -13) \] \[ = (-2)(-1) + (3)(5) + (2)(-13) = 2 + 15 - 26 = -9 \] ### Step 8: Calculate the minimum distance \(d_{min}\) \[ d_{min} = \frac{|\vec{C} \cdot (\vec{b} \times \vec{d})|}{|\vec{b} \times \vec{d}|} = \frac{|-9|}{\sqrt{195}} = \frac{9}{\sqrt{195}} \] ### Step 9: Conclusion Since \(d_{min} \neq 0\), the lines do not intersect.
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise EXERCISE 11 (D) (LONG ANSWER TYPE QUESTIONS(II) )|10 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise EXERCISE 11 (E) (SHORT ANSWER TYPE QUESTIONS )|23 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise EXERCISE 11 (C) (LONG ANSWER TYPE QUESTIONS(II) )|8 Videos
  • RELATIONS AND FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (1)|12 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise CHAPTER TEST 10|12 Videos

Similar Questions

Explore conceptually related problems

Find the coordinates of the point of intersection for the following lines : ( x -3 ) /(1) = ( y - 5 ) /( 2 ) = ( z - 1 ) /(- 1) and ( x - 4 ) /(2) = ( y - 2 ) /( - 1) = ( z - 4 ) /(2)

(i) Find the equations of the straight line passing through the point (2,3,-1) and is perpendicular to the lines : ( x-2)/(2) = (y + 1)/(1) = (z - 3)/(-3) and (x - 3)/(1) = (y + 2)/(1) = (z - 1)/(1) . (ii) Find the equation of the line which intersects the lines : (x + 2)/(1) = (y - 3)/(2) = (z + 1)/(4) and (x - 1)/(2) = (y - 2)/(3) = (z - 3)/(4) Perpendicular and passes through the point (1,1,1) .

Find the angle between the following pairs of line: (x-1)/2=(y-2)/3=(z-3)/(-3)a n d(x+3)/(-1)=(y-5)/8=(z-1)/4

Find the shortest distance between the following pair of lines and hence write whether the lines are intersecting or not : (x-1)/(2)=(y+1)/(3)=z;(x+1)/(5)=(y-2)/(1);z=2

The lines (x-2)/(1)=(y-3)/(2)=(z-4)/(3)and(x-1)/(-5)=(y-2)/(1)=(z-1)/(1) are

" The point of intersection of lines "(x-1)/(2)=(y-2)/(3)=(z-3)/(4)" and "(x-4)/(5)=(y-1)/(2)=(z)/(1)" is "

Find the angle between the following pairs of line: (5-x)/(-2)=(y+3)/1=(1-z)/3and x/3=(1-y)/(-2)=(z+5)/(-1)

Find the angle between the following pairs of line: (x-5)/1=(2y+6)/(-2)=(z-3)/1a n d(x-2)/3=(y+1)/4=(z-6)/5

Lines (x-1)/1 = (y-1)/2 = (z-3)/0 and (x-2)/0 = (y-3)/0 = (z-4)/1 are