Home
Class 12
MATHS
Find the shortest distance and the vecto...

Find the shortest distance and the vector equation of the line of shortest distance between the lines given by :
`(i) vec(r) = (-4 hati + 4 hatj + hatk ) + lambda ( hati + hatj - hatk)`
and `vec(r) = (-3 hati - 8 hatj - 3 hatk) + mu (2 hati + 3 hatj + 3 hatk)`
`(ii) vec(r) = (- hati + 5 hatj ) + lambda ( - hati + hatj + hatk)`
and `vec(r) = ( - hati - 3 hatj + 2 hatk) + mu ( 3 hati + 2 hatj + hatk ).`

Text Solution

Verified by Experts

The correct Answer is:
`(i) sqrt(62) ; vec(r) = ( -5 hati + 3 hatj + 2 hatk) + mu ( hati -2 hatj + 3 hatk)`
(ii) `sqrt(42) , vec(r) = (hati + 3 hatj - 2 hatk) + mu ( hati - 4 hatj + 5 hatk)`.
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise EXERCISE 11 (E) (SHORT ANSWER TYPE QUESTIONS )|23 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise EXERCISE 11 (E) (LONG ANSWER TYPE QUESTIONS (I) )|20 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise EXERCISE 11 (D) (LONG ANSWER TYPE QUESTIONS(I) )|12 Videos
  • RELATIONS AND FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (1)|12 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise CHAPTER TEST 10|12 Videos

Similar Questions

Explore conceptually related problems

Find the shortest distance between the lines whose vector equations are : vec(r) = (hati + 2 hatj + 3 hatk ) + lambda (hati -3 hatj + 2 hatk) and vec(r) = 4 hati + 5 hatj + 6 hatk + mu (2 hati + 3 hatj + hatk) .

Find the shortest distance betwee the lines : vec(r) = (hati + 2 hatj + hatk ) + lambda ( hati - hatj + hatk) and vec(r) = 2 hati - hatj - hakt + mu (2 hati + hatj + 2 hatk) .

Find the shortest distance and the vector equation of the line of shortest distance between the lines given by vecr=3hati+8hatj+3hatk+lamda(3hati-hatj+hatk) and vecr=-3hati-7hatj+6hatk+mu(-3hati+2hatj+4hatk)

Find the angle between the following pairs of lines : (i) vec(r) = 2 hati - 5 hatj + hatk + lambda (3 hati + 2 hatj + 6 hatk ) and vec(r) = 7 hati - 6 hatk + mu (hati + 2 hatj + 2 hatk) (ii) vec(r) = 3 hati + hatj - 2 hatk + lambda (hati - hatj - 2 hatk ) and vec(r) = 2 hati - hatj - 56 hatk + mu (3 hati - 5 hatj - 4 hatk) .

Find the shortest distance between lines: vec(r) = 6 hati + 2 hatj + 2 hatk + lambda ( hati - 2 hatj + 2 hatk) and vec(r) = -4 hati - hatk + mu (3 hati - 2 hatj - 2 hatk) .

The shortest distance between the lines r = ( - hati - hatj - hatk ) + lamda ( 7 hati - 6 hatj + hatk ) and r = ( 3 hati + 5 hatj + 7 hatk ) + mu ( hati - 2 hatj + hatk )

Find the shortest distance between the following (1-4) lines whose vector equations are : 1. vec(r) = hati + hatj + lambda (2 hati - hatj + hatk ) and vec(r) = 2 hati + hatj - hatk + mu (3 hati - 5 hatj + 2 hatk) .

Find the vector and cartesian equations of the plane containing the lines : vec(r) = hati + 2 hatj - 4 hatk + lambda (2 hati + 3 hatj + 6 hatk) and vec(r) = 3 hati + 3 hatj - 5 hatk + mu (-2 hatj + 3 hatj + 8 hatk) .

Determine whether or not the following pairs of lines intersect : vec(r) = (hati - 2 hatj + 3 hatk) + lambda (- hati + hatj - 2 hatk) and vec(r) = ( hati - hatj - hatk) + mu (hati + 2 hatj - 2 hatk) .