Home
Class 12
MATHS
Show that the lines : vec(r) = 3 hati...

Show that the lines :
` vec(r) = 3 hati + 2 hatj - 4 hatk + lambda (hati + 2 hatj + 2 hatk)`
and ` vec(r) = 5 hati - 2 hatj + mu (3 hati + 2 hatj + 6 hatk)`
(ii) `vec(r) = (hati + hatj - hatk) + lambda (3 hati - hatj)`.
and `vec(r) = (4 hati - hatk) + mu (2 hati + 3 hatk)`
are intersecting. Hence, find their point of intersection.

Text Solution

AI Generated Solution

The correct Answer is:
To show that the given lines are intersecting and find their point of intersection, we will follow these steps: ### Step 1: Identify the lines and their vector forms The first pair of lines is given by: 1. \( \vec{r_1} = (3\hat{i} + 2\hat{j} - 4\hat{k}) + \lambda(\hat{i} + 2\hat{j} + 2\hat{k}) \) 2. \( \vec{r_2} = (5\hat{i} - 2\hat{j}) + \mu(3\hat{i} + 2\hat{j} + 6\hat{k}) \) The second pair of lines is given by: 1. \( \vec{r_3} = (1\hat{i} + 1\hat{j} - 1\hat{k}) + \lambda(3\hat{i} - \hat{j}) \) 2. \( \vec{r_4} = (4\hat{i} - 1\hat{k}) + \mu(2\hat{i} + 3\hat{k}) \) ### Step 2: Find the direction vectors and points for each line For the first pair: - Point \( A = (3, 2, -4) \) - Direction vector \( \vec{b} = (1, 2, 2) \) - Point \( C = (5, -2, 0) \) - Direction vector \( \vec{d} = (3, 2, 6) \) For the second pair: - Point \( A' = (1, 1, -1) \) - Direction vector \( \vec{b'} = (3, -1, 0) \) - Point \( C' = (4, 0, -1) \) - Direction vector \( \vec{d'} = (2, 0, 3) \) ### Step 3: Check if the lines intersect using the condition for intersection Two lines intersect if the shortest distance between them is zero. This can be checked using the formula: \[ d_{min} = \frac{|(\vec{C} - \vec{A}) \cdot (\vec{b} \times \vec{d})|}{|\vec{b} \times \vec{d}|} \] If \( d_{min} = 0 \), the lines intersect. #### For the first pair of lines: 1. Calculate \( \vec{C} - \vec{A} = (5 - 3, -2 - 2, 0 + 4) = (2, -4, 4) \) 2. Calculate \( \vec{b} \times \vec{d} \): \[ \vec{b} \times \vec{d} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 2 \\ 3 & 2 & 6 \end{vmatrix} = \hat{i}(2 \cdot 6 - 2 \cdot 2) - \hat{j}(1 \cdot 6 - 2 \cdot 3) + \hat{k}(1 \cdot 2 - 2 \cdot 3) = \hat{i}(12 - 4) - \hat{j}(6 - 6) + \hat{k}(2 - 6) = 8\hat{i} + 0\hat{j} - 4\hat{k} \] 3. Calculate \( | \vec{b} \times \vec{d} | = \sqrt{8^2 + 0^2 + (-4)^2} = \sqrt{64 + 16} = \sqrt{80} = 4\sqrt{5} \) 4. Now calculate \( |(\vec{C} - \vec{A}) \cdot (\vec{b} \times \vec{d})| \): \[ (2, -4, 4) \cdot (8, 0, -4) = 2 \cdot 8 + (-4) \cdot 0 + 4 \cdot (-4) = 16 + 0 - 16 = 0 \] Since \( |(\vec{C} - \vec{A}) \cdot (\vec{b} \times \vec{d})| = 0 \), the lines intersect. ### Step 4: Find the point of intersection To find the point of intersection, set the equations equal: \[ 3 + \lambda = 5 + 3\mu \quad (1) \] \[ 2 + 2\lambda = -2 + 2\mu \quad (2) \] From equation (1): \[ \lambda - 3\mu = 2 \quad (3) \] From equation (2): \[ 2\lambda - 2\mu = -4 \Rightarrow \lambda - \mu = -2 \quad (4) \] Now solve equations (3) and (4): From (4): \[ \lambda = \mu - 2 \] Substituting into (3): \[ (\mu - 2) - 3\mu = 2 \Rightarrow -2\mu - 2 = 2 \Rightarrow -2\mu = 4 \Rightarrow \mu = -2 \] Substituting \( \mu = -2 \) back into (4): \[ \lambda = -2 - 2 = -4 \] ### Step 5: Substitute back to find the intersection point Using \( \lambda = -4 \) in the first line: \[ \vec{r_1} = (3 + (-4), 2 + 2(-4), -4 + 2(-4)) = (3 - 4, 2 - 8, -4 - 8) = (-1, -6, -12) \] Thus, the point of intersection is: \[ \text{Point of Intersection} = (-1, -6, -12) \]
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise EXERCISE 11 (E) (SHORT ANSWER TYPE QUESTIONS )|23 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise EXERCISE 11 (E) (LONG ANSWER TYPE QUESTIONS (I) )|20 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise EXERCISE 11 (D) (LONG ANSWER TYPE QUESTIONS(I) )|12 Videos
  • RELATIONS AND FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (1)|12 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise CHAPTER TEST 10|12 Videos

Similar Questions

Explore conceptually related problems

Show that the lines bar (r) = ( hati + hatj - hatk) + lamda ( 3hati - hatj ) and bar(r) = ( 4hati - hatk ) + mu (2hati + 3hatk) intersect. Find their point of intersection .

Find the shortest distance between lines: vec(r) = 6 hati + 2 hatj + 2 hatk + lambda ( hati - 2 hatj + 2 hatk) and vec(r) = -4 hati - hatk + mu (3 hati - 2 hatj - 2 hatk) .

Find the shortest distance between the lines: (i) vec(r) = 6 hat(i) + 2 hat(j) + 2 hatk + lambda (hati - 2hatj + 2 hatk) and vec(r) = - 4 hati - hatk + mu (3 hati - 2 hatj - 2 hatk ) (ii) vec(r) = (4 hat(i) - hat(j)) + lambda (hati + 2hatj - 3 hatk) and vec(r) = (hati - hatj + 2hatk) + mu (2 hati + 4 hatj - 5 hatk ) (iii) vec(r) = (hati + 2 hatj - 4 hatk) + lambda (2 hati + 3 hatj + 6 hatk ) and vec(r) = (3 hati + 3 hatj + 5 hatk) + mu (-2 hati + 3 hatj + 6 hatk )

Find the angle between the following pairs of lines : (i) vec(r) = 2 hati - 5 hatj + hatk + lambda (3 hati + 2 hatj + 6 hatk ) and vec(r) = 7 hati - 6 hatk + mu (hati + 2 hatj + 2 hatk) (ii) vec(r) = 3 hati + hatj - 2 hatk + lambda (hati - hatj - 2 hatk ) and vec(r) = 2 hati - hatj - 56 hatk + mu (3 hati - 5 hatj - 4 hatk) .

Find the shortest distance betwee the lines : vec(r) = (hati + 2 hatj + hatk ) + lambda ( hati - hatj + hatk) and vec(r) = 2 hati - hatj - hakt + mu (2 hati + hatj + 2 hatk) .

Find the angle between the line vecr = (hati +2hatj -hatk ) +lambda (hati - hatj +hatk) and vecr cdot (2hati - hatj +hatk) = 4.

Find the shortest distance between the lines: (i) vec(r) = 3 hati + 8 hat(j) + 3 hatk + lambda (3 hati - hatj + hatk) and vec(r) = - 3 hat(i) - 7 hatj + 6 hatk + mu (-3 hati + 2 hatj + 4 hatk ) (ii) ( hati - hatj + 2 hatk) + lambda ( -2 hati + hatj + 3 hatk ) and (2 hati + 3 hatj - hatk) + mu (3 hati - 2 hatj + 2 hatk). (iii) vec(r) = (hati + 2 hatj + 3 hatk) + lambda ( hati - 3 hatj + 2 hatk ) and vec(r) = (4 hati + 5 hatj + 6 hatk) + mu (2 hati + 3 hatj + hatk) .

(i) show that the line : vec(r) = 2 hati - 3 hatj + 5 hatk + lambda (hati - hatj + 2 hatk) lies in the plane vec(r) . (3 hat(i) + hatj - hatk ) + 2 = 0 . (ii) Show that the line : vec(r) = hati + hatj + lambda (2 hati + hatj + 4 hatk) lies in the plane vec(r). (hati + 2 hatj - hatk ) = 3.

The shortest distance between the lines r = ( - hati - hatj - hatk ) + lamda ( 7 hati - 6 hatj + hatk ) and r = ( 3 hati + 5 hatj + 7 hatk ) + mu ( hati - 2 hatj + hatk )