Home
Class 12
MATHS
Show that the lines : (a) (x -1)/(3) =...

Show that the lines :
(a) `(x -1)/(3) = (y + 1)/(5) and (x - 2)/(4) = (y - 1)/(3) = (z + 1)/(-2)`
(b) `vec(r) = (hati + hatj) + lambda ( 2 hati - hatk)`
and `vec(r) = (2 hati - hatj) + mu (hati + hatk - hatk) ` do not intersect.

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise EXERCISE 11 (E) (SHORT ANSWER TYPE QUESTIONS )|23 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise EXERCISE 11 (E) (LONG ANSWER TYPE QUESTIONS (I) )|20 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise EXERCISE 11 (D) (LONG ANSWER TYPE QUESTIONS(I) )|12 Videos
  • RELATIONS AND FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (1)|12 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise CHAPTER TEST 10|12 Videos

Similar Questions

Explore conceptually related problems

The shortest distance between the lines vecr = (-hati - hatj) + lambda(2hati - hatk) and vecr = (2hati - hatj) + mu(hati + hatj -hatk) is

Show that the lines bar (r) = ( hati + hatj - hatk) + lamda ( 3hati - hatj ) and bar(r) = ( 4hati - hatk ) + mu (2hati + 3hatk) intersect. Find their point of intersection .

Show that the lines : vec(r) = 3 hati + 2 hatj - 4 hatk + lambda (hati + 2 hatj + 2 hatk) and vec(r) = 5 hati - 2 hatj + mu (3 hati + 2 hatj + 6 hatk) (ii) vec(r) = (hati + hatj - hatk) + lambda (3 hati - hatj) . and vec(r) = (4 hati - hatk) + mu (2 hati + 3 hatk) are intersecting. Hence, find their point of intersection.

Find the shortest distance betwee the lines : vec(r) = (hati + 2 hatj + hatk ) + lambda ( hati - hatj + hatk) and vec(r) = 2 hati - hatj - hakt + mu (2 hati + hatj + 2 hatk) .

Find the shortest distance between the lines: (i) vec(r) = 6 hat(i) + 2 hat(j) + 2 hatk + lambda (hati - 2hatj + 2 hatk) and vec(r) = - 4 hati - hatk + mu (3 hati - 2 hatj - 2 hatk ) (ii) vec(r) = (4 hat(i) - hat(j)) + lambda (hati + 2hatj - 3 hatk) and vec(r) = (hati - hatj + 2hatk) + mu (2 hati + 4 hatj - 5 hatk ) (iii) vec(r) = (hati + 2 hatj - 4 hatk) + lambda (2 hati + 3 hatj + 6 hatk ) and vec(r) = (3 hati + 3 hatj + 5 hatk) + mu (-2 hati + 3 hatj + 6 hatk )

Find the shortest distance between lines: vec(r) = 6 hati + 2 hatj + 2 hatk + lambda ( hati - 2 hatj + 2 hatk) and vec(r) = -4 hati - hatk + mu (3 hati - 2 hatj - 2 hatk) .

Find the angle between the vertors vec(A) = hati + 2hatj - hatk and vec(B) = - hati +hatj - 2hatk .

Find the angle between the following pairs of lines : (i) vec(r) = 2 hati - 5 hatj + hatk + lambda (3 hati + 2 hatj + 6 hatk ) and vec(r) = 7 hati - 6 hatk + mu (hati + 2 hatj + 2 hatk) (ii) vec(r) = 3 hati + hatj - 2 hatk + lambda (hati - hatj - 2 hatk ) and vec(r) = 2 hati - hatj - 56 hatk + mu (3 hati - 5 hatj - 4 hatk) .