Home
Class 12
MATHS
Determine graphically the minimum value ...

Determine graphically the minimum value of the objective function: `Z = -50x + 20y` subject to the constraints:
`2x - y ge -5, 3x + y ge 3, 2x - 3y le 12, x, y ge 0`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem graphically, we need to follow these steps: ### Step 1: Write down the objective function and constraints The objective function is given as: \[ Z = -50x + 20y \] The constraints are: 1. \( 2x - y \geq -5 \) 2. \( 3x + y \geq 3 \) 3. \( 2x - 3y \leq 12 \) 4. \( x, y \geq 0 \) ### Step 2: Convert inequalities into equations We will convert each inequality into an equation to find the boundary lines. 1. For \( 2x - y = -5 \): - Rearranging gives \( y = 2x + 5 \) 2. For \( 3x + y = 3 \): - Rearranging gives \( y = -3x + 3 \) 3. For \( 2x - 3y = 12 \): - Rearranging gives \( y = \frac{2}{3}x - 4 \) ### Step 3: Find intercepts for each line To plot these lines, we can find the x and y intercepts. 1. For \( y = 2x + 5 \): - x-intercept: Set \( y = 0 \) → \( 0 = 2x + 5 \) → \( x = -2.5 \) (not valid since \( x \geq 0 \)) - y-intercept: Set \( x = 0 \) → \( y = 5 \) 2. For \( y = -3x + 3 \): - x-intercept: Set \( y = 0 \) → \( 0 = -3x + 3 \) → \( x = 1 \) - y-intercept: Set \( x = 0 \) → \( y = 3 \) 3. For \( y = \frac{2}{3}x - 4 \): - x-intercept: Set \( y = 0 \) → \( 0 = \frac{2}{3}x - 4 \) → \( x = 6 \) - y-intercept: Set \( x = 0 \) → \( y = -4 \) (not valid since \( y \geq 0 \)) ### Step 4: Plot the lines on a graph - Plot the points (0, 5) for the first line. - Plot the points (1, 0) and (0, 3) for the second line. - Plot the point (6, 0) for the third line. ### Step 5: Determine the feasible region - For the first constraint \( 2x - y \geq -5 \), shade the area above the line \( y = 2x + 5 \). - For the second constraint \( 3x + y \geq 3 \), shade the area above the line \( y = -3x + 3 \). - For the third constraint \( 2x - 3y \leq 12 \), shade the area below the line \( y = \frac{2}{3}x - 4 \). - The feasible region is where all shaded areas overlap and is constrained to the first quadrant (where \( x, y \geq 0 \)). ### Step 6: Identify the corner points of the feasible region The corner points of the feasible region can be found by solving the equations of the lines where they intersect. 1. Intersection of \( y = 2x + 5 \) and \( y = -3x + 3 \): \[ 2x + 5 = -3x + 3 \implies 5x = -2 \implies x = -\frac{2}{5} \text{ (not valid)} \] 2. Intersection of \( y = -3x + 3 \) and \( y = \frac{2}{3}x - 4 \): \[ -3x + 3 = \frac{2}{3}x - 4 \implies -\frac{11}{3}x = -7 \implies x = \frac{21}{11}, y = -3(\frac{21}{11}) + 3 = \frac{3}{11} \text{ (valid)} \] 3. Intersection of \( y = 2x + 5 \) and \( y = \frac{2}{3}x - 4 \): \[ 2x + 5 = \frac{2}{3}x - 4 \implies \frac{4}{3}x = -9 \implies x = -\frac{27}{4} \text{ (not valid)} \] 4. The only valid corner point is \( (0, 5) \). ### Step 7: Evaluate the objective function at the corner points Now we evaluate the objective function \( Z = -50x + 20y \) at the valid corner point \( (0, 5) \): \[ Z = -50(0) + 20(5) = 100 \] ### Conclusion The minimum value of the objective function \( Z \) is \( 100 \) at the point \( (0, 5) \).
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise (FAQ)|18 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise EXERCISE 12(a) (Short Answer Type Questions)|10 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise CHAPTER TEST (3)|12 Videos

Similar Questions

Explore conceptually related problems

Determine graphically the minimum value of the objective function z = - 50x + 20 y, subject to he constraints. 2x - y ge - 5 3x + y ge 3 2x - 3y le 12 x ge 0, y ge 0

The minimum value of the objective function Z=x+2y Subject to the constraints, 2x+ y ge 3 , x +2y ge 6 , x, y ge 0 occurs

Maximum Z = 3x + 5y subject to the constraints : x + 2y ge 10, x + y ge 6, 3x + y ge 8, x ge 0, y ge 0 .

Maximize : Z = x + y ,subject to the constraints: x - y le -1, -x + y le 0, x ge 0, y ge 0

Maximise Z= -x + 2y , subject to the constraints: x ge 3, x + y ge 5, x + 2y ge 6, y ge 0 .

Minimize Z = 3x + 2y subject to the constraints : x + y ge 8, 3x + 5y le 15, x ge 0, y ge 0 .

The maximum and minimum values of the objective function Z = x + 2y subject to the constraints x+2y ge 100, 2x -y le 0, 2x +y le 200 occurs respectively at

Maximize: Z = -x + 2y , subject to the constraints: x ge 3, x + y ge 5, x + 2y ge 6, y ge 0 .

Minimize Z = 2x + 3y subject to constraints x + y ge 6 , 2x + y ge 7, x + 4y ge 8 , x ge 0 , y ge 0