Home
Class 12
MATHS
Minimize and Maximize Z = 5x + 2y , subj...

Minimize and Maximize `Z = 5x + 2y `, subject to the following constraints:
`x - 2y le 2, 3x + 2y le 12, -3x + 2y le 3, x ge 0, y ge 0`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of minimizing and maximizing \( Z = 5x + 2y \) subject to the given constraints, we will follow these steps: ### Step 1: Define the Constraints The constraints given are: 1. \( x - 2y \leq 2 \) 2. \( 3x + 2y \leq 12 \) 3. \( -3x + 2y \leq 3 \) 4. \( x \geq 0 \) 5. \( y \geq 0 \) ### Step 2: Convert Inequalities to Equations To find the boundary lines of the constraints, we convert the inequalities into equalities: 1. \( x - 2y = 2 \) 2. \( 3x + 2y = 12 \) 3. \( -3x + 2y = 3 \) ### Step 3: Find Intercepts Next, we find the intercepts for each equation. 1. For \( x - 2y = 2 \): - \( x \)-intercept: Set \( y = 0 \) → \( x = 2 \) → Point: \( (2, 0) \) - \( y \)-intercept: Set \( x = 0 \) → \( -2y = 2 \) → \( y = -1 \) (not valid since \( y \geq 0 \)) 2. For \( 3x + 2y = 12 \): - \( x \)-intercept: Set \( y = 0 \) → \( 3x = 12 \) → \( x = 4 \) → Point: \( (4, 0) \) - \( y \)-intercept: Set \( x = 0 \) → \( 2y = 12 \) → \( y = 6 \) → Point: \( (0, 6) \) 3. For \( -3x + 2y = 3 \): - \( x \)-intercept: Set \( y = 0 \) → \( -3x = 3 \) → \( x = -1 \) (not valid since \( x \geq 0 \)) - \( y \)-intercept: Set \( x = 0 \) → \( 2y = 3 \) → \( y = 1.5 \) → Point: \( (0, 1.5) \) ### Step 4: Find Intersection Points Now we find the intersection points of the lines: 1. **Intersection of \( x - 2y = 2 \) and \( 3x + 2y = 12 \)**: - Adding the equations: \[ x - 2y + 3x + 2y = 2 + 12 \implies 4x = 14 \implies x = \frac{7}{2} \] - Substitute \( x = \frac{7}{2} \) into \( x - 2y = 2 \): \[ \frac{7}{2} - 2y = 2 \implies -2y = 2 - \frac{7}{2} \implies -2y = \frac{-3}{2} \implies y = \frac{3}{4} \] - Intersection Point: \( \left( \frac{7}{2}, \frac{3}{4} \right) \) 2. **Intersection of \( 3x + 2y = 12 \) and \( -3x + 2y = 3 \)**: - Adding the equations: \[ 3x + 2y - 3x + 2y = 12 + 3 \implies 4y = 15 \implies y = \frac{15}{4} \] - Substitute \( y = \frac{15}{4} \) into \( 3x + 2y = 12 \): \[ 3x + 2 \cdot \frac{15}{4} = 12 \implies 3x + \frac{30}{4} = 12 \implies 3x = 12 - \frac{30}{4} \implies 3x = \frac{48 - 30}{4} \implies 3x = \frac{18}{4} \implies x = \frac{3}{2} \] - Intersection Point: \( \left( \frac{3}{2}, \frac{15}{4} \right) \) ### Step 5: Identify Feasible Region The feasible region is bounded by the points: - \( (0, 0) \) - \( (2, 0) \) - \( (0, 6) \) - \( (0, 1.5) \) - \( \left( \frac{7}{2}, \frac{3}{4} \right) \) - \( \left( \frac{3}{2}, \frac{15}{4} \right) \) ### Step 6: Evaluate Objective Function at Corner Points Now we evaluate \( Z = 5x + 2y \) at each corner point: 1. \( (0, 0) \): \( Z = 5(0) + 2(0) = 0 \) 2. \( (2, 0) \): \( Z = 5(2) + 2(0) = 10 \) 3. \( (0, 6) \): \( Z = 5(0) + 2(6) = 12 \) 4. \( (0, 1.5) \): \( Z = 5(0) + 2(1.5) = 3 \) 5. \( \left( \frac{7}{2}, \frac{3}{4} \right) \): \[ Z = 5 \cdot \frac{7}{2} + 2 \cdot \frac{3}{4} = \frac{35}{2} + \frac{3}{2} = \frac{38}{2} = 19 \] 6. \( \left( \frac{3}{2}, \frac{15}{4} \right) \): \[ Z = 5 \cdot \frac{3}{2} + 2 \cdot \frac{15}{4} = \frac{15}{2} + \frac{30}{4} = \frac{15}{2} + \frac{15}{2} = 15 \] ### Step 7: Determine Minimum and Maximum Values - Minimum value of \( Z \) is \( 0 \) at \( (0, 0) \). - Maximum value of \( Z \) is \( 19 \) at \( \left( \frac{7}{2}, \frac{3}{4} \right) \). ### Conclusion - The minimum value of \( Z \) is \( 0 \) at the point \( (0, 0) \). - The maximum value of \( Z \) is \( 19 \) at the point \( \left( \frac{7}{2}, \frac{3}{4} \right) \).
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise (FAQ)|18 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise EXERCISE 12(a) (Short Answer Type Questions)|10 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise CHAPTER TEST (3)|12 Videos

Similar Questions

Explore conceptually related problems

3x + 2y le 14, 3x + y le 9, x,y ge 0

Z =3x + 2y x + 2y le 10, 3x + y le 15, x ge 0, y ge 0

Z = -3x + 4y x + 2y le 8, 3x + 2y le 12, x ge 0, y ge 0

Maximize Z = 5x + 3y subject to the constraints: 3x + 5y le 15, 5x + 2y le 10, x ge 0, y ge 0

Z = -3x + 4y x + 2y le 8, 3x + 2y le 12, x ge 0 , y ge 0 .

Maximize: Z = -x + 2y , subject to the constraints: x ge 3, x + y ge 5, x + 2y ge 6, y ge 0 .

Maximize : Z = x + y ,subject to the constraints: x - y le -1, -x + y le 0, x ge 0, y ge 0

x-2y le 2 , x +y le 3,-2x +y le 4, x ge 0,y ge 0

x+2y le 100,2x +y le 120,x+y le 70 , x ge 0, y ge 0

3x + 4y le 60, x ge 2y , x ge1 , y ge 0