Home
Class 12
MATHS
Solve the following Linear Programming P...

Solve the following Linear Programming Problems graphically:
Maximize (6-15):
OBJECTIVE FUNCTION CONSTRAINTS
6. `Z = 6x + 8y`
`x + y le 6, 3x + y ge 6, x - y ge 0, x ge 0, y ge 0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given linear programming problem graphically, we will follow these steps: ### Step 1: Define the Objective Function and Constraints The objective function is given as: \[ Z = 6x + 8y \] The constraints are: 1. \( x + y \leq 6 \) 2. \( 3x + y \geq 6 \) 3. \( x - y \geq 0 \) (which implies \( x \geq y \)) 4. \( x \geq 0 \) 5. \( y \geq 0 \) ### Step 2: Convert Inequalities to Equations We will convert the inequalities into equations to find the boundary lines. 1. For \( x + y = 6 \): - x-intercept: Set \( y = 0 \) → \( x = 6 \) → Point (6, 0) - y-intercept: Set \( x = 0 \) → \( y = 6 \) → Point (0, 6) 2. For \( 3x + y = 6 \): - x-intercept: Set \( y = 0 \) → \( 3x = 6 \) → \( x = 2 \) → Point (2, 0) - y-intercept: Set \( x = 0 \) → \( y = 6 \) → Point (0, 6) 3. For \( x - y = 0 \) (or \( x = y \)): - This line passes through the origin (0, 0) and has a slope of 1. ### Step 3: Plot the Lines on a Graph Now we will plot the lines on a graph: - The line \( x + y = 6 \) will connect points (6, 0) and (0, 6). - The line \( 3x + y = 6 \) will connect points (2, 0) and (0, 6). - The line \( x = y \) will be a diagonal line through the origin. ### Step 4: Determine the Feasible Region Next, we will determine the feasible region by testing points in relation to the inequalities: - For \( x + y \leq 6 \), the region below the line is feasible. - For \( 3x + y \geq 6 \), the region above the line is feasible. - For \( x \geq y \), the region above the line \( x = y \) is feasible. - The non-negativity constraints \( x \geq 0 \) and \( y \geq 0 \) restrict the feasible region to the first quadrant. ### Step 5: Identify Corner Points The feasible region is bounded by the lines, and we need to find the corner points: 1. Intersection of \( x + y = 6 \) and \( x = y \): - Substitute \( y = x \) into \( x + y = 6 \): \[ 2x = 6 \Rightarrow x = 3, y = 3 \] → Point (3, 3) 2. Intersection of \( 3x + y = 6 \) and \( x = y \): - Substitute \( y = x \) into \( 3x + y = 6 \): \[ 3x + x = 6 \Rightarrow 4x = 6 \Rightarrow x = \frac{3}{2}, y = \frac{3}{2} \] → Point \(\left(\frac{3}{2}, \frac{3}{2}\right)\) 3. Intersection of \( x + y = 6 \) and \( 3x + y = 6 \): - Solve the system: \[ x + y = 6 \quad (1) \\ 3x + y = 6 \quad (2) \] Subtract (1) from (2): \[ 2x = 0 \Rightarrow x = 0 \] Substitute \( x = 0 \) into (1): \[ y = 6 \] → Point (0, 6) 4. Intersection of \( x + y = 6 \) and \( x = 0 \): - Substitute \( x = 0 \) into \( x + y = 6 \): \[ y = 6 \] → Point (0, 6) 5. Intersection of \( 3x + y = 6 \) and \( x = 0 \): - Substitute \( x = 0 \) into \( 3x + y = 6 \): \[ y = 6 \] → Point (0, 6) ### Step 6: Evaluate the Objective Function at Each Corner Point Now we will evaluate \( Z = 6x + 8y \) at each corner point: 1. At (2, 0): \[ Z = 6(2) + 8(0) = 12 \] 2. At (6, 0): \[ Z = 6(6) + 8(0) = 36 \] 3. At \(\left(\frac{3}{2}, \frac{3}{2}\right)\): \[ Z = 6\left(\frac{3}{2}\right) + 8\left(\frac{3}{2}\right) = 9 + 12 = 21 \] 4. At (3, 3): \[ Z = 6(3) + 8(3) = 18 + 24 = 42 \] ### Step 7: Identify the Maximum Value The maximum value of \( Z \) occurs at the point (3, 3): \[ Z_{\text{max}} = 42 \] ### Conclusion The maximum value of the objective function \( Z = 6x + 8y \) is 42 at the point (3, 3). ---
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise EXERCISE 12 C (Long Answer Type Questions )|23 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise EXERCISE 12 C (MULTIPLE CHOICE QUESTIONS)|12 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise EXERCISE 12(b) (Short Answer Type Questions)|5 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise CHAPTER TEST (3)|12 Videos

Similar Questions

Explore conceptually related problems

2x + y ge 6, x + 2y ge 8, x ge 0, y ge 0

2x + y le 6, x + 2y le 8, x ge 0, y ge 0

Z = 15x + 30y x + y le 8, 2x + y ge 8, x - 2y ge 0, x, y ge 0

Minimize and Maximize(25-29): OBJECTIVE FUNCTION CONSTRAINTS Z = 3x + 9y x + 3y le 60, x + y ge 10, x le y , x ge 0, y ge 0

Minimize (16-21): OBJECTIVE FUNCTION CONSTRAINTS Z = 200x + 500y x + 2y ge 10, 3x + 4y le 24, x ge 0, y ge 0 .

Z =13x + 3y x + y le 6, 3x + 2y le 15, x ge 0, y ge 0 .

Z=30x +20 y , x+y le 8, x +2y ge 4,6x +4 ge 12,x ge 0 ,y ge 0

Maximize z = 4x + 6 y ,subject to 3x + 2y le 12, x + y ge 4, x ge 0 , y ge 0

Maximize z = 6 x + 4y , subject to 2x + 3y le 30, 3x + 2y le 24, x + y ge 3, x ge 0 , y ge0.

Minimize z = 6 x + 2y , subject to 5 x + 9y le 90, x + y ge 4, y le 8, x ge 0, y ge 0 .

MODERN PUBLICATION-LINEAR PROGRAMMING -EXERCISE 12(b) (Long Answer Tyoe Questions(I)) (LATQ)
  1. Solve the following Linear Programming Problems graphically: Maximi...

    Text Solution

    |

  2. Z = 4x + y x + y le 50, 3x + y le 90, x ge 0, y ge 0

    Text Solution

    |

  3. Z =3x + 2y x + 2y le 10, 3x + y le 15, x ge 0, y ge 0

    Text Solution

    |

  4. Z =13x + 3y x + y le 6, 3x + 2y le 15, x ge 0, y ge 0.

    Text Solution

    |

  5. Z = 3x + 5y x + y ge 2, x + 3y ge 3 x ge 0 ,y ge 0

    Text Solution

    |

  6. Z= 4x + 7y x + 2y le 20, x + y le 15, x ge 0, y ge 0.

    Text Solution

    |

  7. Z = -3x + 4y x + 2y le 8, 3x + 2y le 12, x ge 0 , y ge 0.

    Text Solution

    |

  8. Z = 6x + 11y 2x + y le 104, x + 2y le 76, x, y ge 0

    Text Solution

    |

  9. Z = 7x + 4y 2x + y le 10, x + 2y le 12, x ge 0, y ge 0

    Text Solution

    |

  10. (i) Z = 20x + 10y x + 2y le 28, 3x + y le 24, x ge 2, x, y ge 0 (ii...

    Text Solution

    |

  11. Minimize (16-21): OBJECTIVE FUNCTION CONSTRAINTS Z = 200x + 500y ...

    Text Solution

    |

  12. Z = -3x + 4y x + 2y le 8, 3x + 2y le 12, x ge 0, y ge 0

    Text Solution

    |

  13. Z = 3x + 5y x + 3y ge 3, x + y ge 2,x ge 0, y ge 0

    Text Solution

    |

  14. Z = 2x + 3y x ge 0, y ge 0, 1 le x + 2y le10

    Text Solution

    |

  15. Z = 3x + 9y x + 3y le 60, x + y ge 10, x le y , x ge 0, y ge 0

    Text Solution

    |

  16. Z = 5x + 10y x + y ge 60, x + 2y le 120, x -2y ge 0, x, y ge 0

    Text Solution

    |

  17. Maximize if possible: (i) Z = 3x + 2y subject to the constraints: x ...

    Text Solution

    |

  18. Maximize: Z = -x + 2y, subject to the constraints: x ge 3, x + y ...

    Text Solution

    |

  19. Maximize : Z = x + y,subject to the constraints: x - y le -1, -x +...

    Text Solution

    |

  20. Minimize and Maximize(25-29): OBJECTIVE FUNCTION CONSTRAINTS Z = ...

    Text Solution

    |