Home
Class 12
MATHS
Z = -3x + 4y x + 2y le 8, 3x + 2y le 1...

`Z = -3x + 4y`
`x + 2y le 8, 3x + 2y le 12, x ge 0 , y ge 0`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the linear programming problem given by the objective function \( Z = -3x + 4y \) with the constraints: 1. \( x + 2y \leq 8 \) 2. \( 3x + 2y \leq 12 \) 3. \( x \geq 0 \) 4. \( y \geq 0 \) we will follow these steps: ### Step 1: Identify the Constraints We have the following constraints: - \( x + 2y \leq 8 \) - \( 3x + 2y \leq 12 \) - \( x \geq 0 \) - \( y \geq 0 \) ### Step 2: Convert Inequalities to Equations To find the boundary lines for the constraints, we convert the inequalities into equations: 1. \( x + 2y = 8 \) 2. \( 3x + 2y = 12 \) ### Step 3: Find Intercepts for Each Line **For the line \( x + 2y = 8 \):** - When \( x = 0 \): \( 2y = 8 \) → \( y = 4 \) (Point: \( (0, 4) \)) - When \( y = 0 \): \( x = 8 \) (Point: \( (8, 0) \)) **For the line \( 3x + 2y = 12 \):** - When \( x = 0 \): \( 2y = 12 \) → \( y = 6 \) (Point: \( (0, 6) \)) - When \( y = 0 \): \( 3x = 12 \) → \( x = 4 \) (Point: \( (4, 0) \)) ### Step 4: Plot the Lines Plot the points \( (0, 4) \), \( (8, 0) \), \( (0, 6) \), and \( (4, 0) \) on a graph. Draw the lines for the equations and shade the feasible region that satisfies all constraints. ### Step 5: Find the Intersection Points To find the intersection of the two lines: Set the equations equal to each other: 1. From \( x + 2y = 8 \) → \( 2y = 8 - x \) → \( y = 4 - \frac{x}{2} \) 2. Substitute into \( 3x + 2y = 12 \): \[ 3x + 2(4 - \frac{x}{2}) = 12 \] \[ 3x + 8 - x = 12 \] \[ 2x = 4 \Rightarrow x = 2 \] Substitute \( x = 2 \) back into \( y = 4 - \frac{x}{2} \): \[ y = 4 - 1 = 3 \] So, the intersection point is \( (2, 3) \). ### Step 6: Identify Corner Points The corner points of the feasible region are: 1. \( (0, 0) \) 2. \( (0, 4) \) 3. \( (4, 0) \) 4. \( (2, 3) \) ### Step 7: Evaluate the Objective Function at Each Corner Point Now, we evaluate \( Z = -3x + 4y \) at each corner point: 1. At \( (0, 0) \): \( Z = -3(0) + 4(0) = 0 \) 2. At \( (0, 4) \): \( Z = -3(0) + 4(4) = 16 \) 3. At \( (4, 0) \): \( Z = -3(4) + 4(0) = -12 \) 4. At \( (2, 3) \): \( Z = -3(2) + 4(3) = -6 + 12 = 6 \) ### Step 8: Determine Maximum and Minimum Values From the evaluations: - Maximum value of \( Z \) is \( 16 \) at \( (0, 4) \). - Minimum value of \( Z \) is \( -12 \) at \( (4, 0) \). ### Conclusion The solution to the linear programming problem is: - Maximum value of \( Z \) is \( 16 \) at the point \( (0, 4) \). - Minimum value of \( Z \) is \( -12 \) at the point \( (4, 0) \). ---
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise EXERCISE 12 C (Long Answer Type Questions )|23 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise EXERCISE 12 C (MULTIPLE CHOICE QUESTIONS)|12 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise EXERCISE 12(b) (Short Answer Type Questions)|5 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise CHAPTER TEST (3)|12 Videos

Similar Questions

Explore conceptually related problems

x + 2y le 3, 3x + 4y ge 12, x ge 0, y ge 1

x +2y le 3, 3x + 4y ge 12 , x ge 0, y ge 1

2x + y le 6, x + 2y le 8, x ge 0, y ge 0

y - 2x le 1, x + y le 2, x ge 0, y ge 0

x + 2y le 40, 2x + y le 40, x ge 0, y ge 0

Z = 7x + 4y 2x + y le 10, x + 2y le 12, x ge 0, y ge 0

x-y le 2, x + y le 4 , x ge 0, y ge

Z =3x + 2y x + 2y le 10, 3x + y le 15, x ge 0, y ge 0

3x + 4y le 60, x + 3y le 30, x ge 0, y ge 0

Z= 4x + 7y x + 2y le 20, x + y le 15, x ge 0, y ge 0 .

MODERN PUBLICATION-LINEAR PROGRAMMING -EXERCISE 12(b) (Long Answer Tyoe Questions(I)) (LATQ)
  1. Z = 3x + 5y x + y ge 2, x + 3y ge 3 x ge 0 ,y ge 0

    Text Solution

    |

  2. Z= 4x + 7y x + 2y le 20, x + y le 15, x ge 0, y ge 0.

    Text Solution

    |

  3. Z = -3x + 4y x + 2y le 8, 3x + 2y le 12, x ge 0 , y ge 0.

    Text Solution

    |

  4. Z = 6x + 11y 2x + y le 104, x + 2y le 76, x, y ge 0

    Text Solution

    |

  5. Z = 7x + 4y 2x + y le 10, x + 2y le 12, x ge 0, y ge 0

    Text Solution

    |

  6. (i) Z = 20x + 10y x + 2y le 28, 3x + y le 24, x ge 2, x, y ge 0 (ii...

    Text Solution

    |

  7. Minimize (16-21): OBJECTIVE FUNCTION CONSTRAINTS Z = 200x + 500y ...

    Text Solution

    |

  8. Z = -3x + 4y x + 2y le 8, 3x + 2y le 12, x ge 0, y ge 0

    Text Solution

    |

  9. Z = 3x + 5y x + 3y ge 3, x + y ge 2,x ge 0, y ge 0

    Text Solution

    |

  10. Z = 2x + 3y x ge 0, y ge 0, 1 le x + 2y le10

    Text Solution

    |

  11. Z = 3x + 9y x + 3y le 60, x + y ge 10, x le y , x ge 0, y ge 0

    Text Solution

    |

  12. Z = 5x + 10y x + y ge 60, x + 2y le 120, x -2y ge 0, x, y ge 0

    Text Solution

    |

  13. Maximize if possible: (i) Z = 3x + 2y subject to the constraints: x ...

    Text Solution

    |

  14. Maximize: Z = -x + 2y, subject to the constraints: x ge 3, x + y ...

    Text Solution

    |

  15. Maximize : Z = x + y,subject to the constraints: x - y le -1, -x +...

    Text Solution

    |

  16. Minimize and Maximize(25-29): OBJECTIVE FUNCTION CONSTRAINTS Z = ...

    Text Solution

    |

  17. Z = 5x + 10y x + 2y le 120, x + y ge 60, x - 2y ge 0, x ge 0 , y ge ...

    Text Solution

    |

  18. Z = 15x + 30y x + y le 8, 2x + y ge 8, x - 2y ge 0, x, y ge 0

    Text Solution

    |

  19. Z = x + 2y x + 2y ge 100, x - y le 0, 2x + y le 200, x, y ge 0

    Text Solution

    |

  20. (i)Z = 3x + 2y x + 3y le 60, x + y ge 10, x le y, x, y ge 0 (ii)Z = ...

    Text Solution

    |