Home
Class 12
MATHS
Z = 7x + 4y 2x + y le 10, x + 2y le 12, ...

`Z = 7x + 4y`
`2x + y le 10, x + 2y le 12, x ge 0, y ge 0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the linear programming problem given by the objective function \( Z = 7x + 4y \) with constraints \( 2x + y \leq 10 \), \( x + 2y \leq 12 \), and \( x, y \geq 0 \), we will follow these steps: ### Step 1: Identify the Constraints The constraints are: 1. \( 2x + y \leq 10 \) 2. \( x + 2y \leq 12 \) 3. \( x \geq 0 \) 4. \( y \geq 0 \) ### Step 2: Convert Inequalities to Equations To find the boundary lines, we convert the inequalities into equations: 1. \( 2x + y = 10 \) 2. \( x + 2y = 12 \) ### Step 3: Find Intercepts For the first equation \( 2x + y = 10 \): - When \( x = 0 \): \( y = 10 \) (y-intercept) - When \( y = 0 \): \( 2x = 10 \) → \( x = 5 \) (x-intercept) For the second equation \( x + 2y = 12 \): - When \( x = 0 \): \( 2y = 12 \) → \( y = 6 \) (y-intercept) - When \( y = 0 \): \( x = 12 \) (x-intercept) ### Step 4: Plot the Constraints Plot the lines on a graph: - The line \( 2x + y = 10 \) intersects at points (5, 0) and (0, 10). - The line \( x + 2y = 12 \) intersects at points (12, 0) and (0, 6). ### Step 5: Determine the Feasible Region The feasible region is where the shaded areas of the inequalities overlap, which is bounded by the axes and the lines. Since both inequalities are less than or equal to, we shade towards the origin. ### Step 6: Find Corner Points The corner points of the feasible region can be found by solving the equations: 1. Intersection of \( 2x + y = 10 \) and \( x + 2y = 12 \): - From \( 2x + y = 10 \), we can express \( y = 10 - 2x \). - Substitute into \( x + 2(10 - 2x) = 12 \): \[ x + 20 - 4x = 12 \implies -3x = -8 \implies x = \frac{8}{3} \] - Substitute \( x = \frac{8}{3} \) back into \( y = 10 - 2\left(\frac{8}{3}\right) \): \[ y = 10 - \frac{16}{3} = \frac{30}{3} - \frac{16}{3} = \frac{14}{3} \] - So one corner point is \( \left(\frac{8}{3}, \frac{14}{3}\right) \). 2. The other corner points from the intercepts are: - (0, 0) - (5, 0) - (0, 6) ### Step 7: Evaluate the Objective Function at Each Corner Point Now we evaluate \( Z = 7x + 4y \) at each corner point: 1. At \( (0, 0) \): \[ Z = 7(0) + 4(0) = 0 \] 2. At \( (5, 0) \): \[ Z = 7(5) + 4(0) = 35 \] 3. At \( (0, 6) \): \[ Z = 7(0) + 4(6) = 24 \] 4. At \( \left(\frac{8}{3}, \frac{14}{3}\right) \): \[ Z = 7\left(\frac{8}{3}\right) + 4\left(\frac{14}{3}\right) = \frac{56}{3} + \frac{56}{3} = \frac{112}{3} \approx 37.33 \] ### Step 8: Determine Maximum and Minimum Values - Maximum value of \( Z \) is \( 35 \) at \( (5, 0) \). - Minimum value of \( Z \) is \( 0 \) at \( (0, 0) \). ### Final Solution The maximum value of \( Z \) is \( 35 \) at the point \( (5, 0) \), and the minimum value of \( Z \) is \( 0 \) at the point \( (0, 0) \).
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise EXERCISE 12 C (Long Answer Type Questions )|23 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise EXERCISE 12 C (MULTIPLE CHOICE QUESTIONS)|12 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise EXERCISE 12(b) (Short Answer Type Questions)|5 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise CHAPTER TEST (3)|12 Videos

Similar Questions

Explore conceptually related problems

y - 2x le 1, x + y le 2, x ge 0, y ge 0

2x + y le 6, x + 2y le 8, x ge 0, y ge 0

Z = -3x + 4y x + 2y le 8, 3x + 2y le 12, x ge 0, y ge 0

x + 2y le 40, 2x + y le 40, x ge 0, y ge 0

x-y le 2, x + y le 4 , x ge 0, y ge

Z = -3x + 4y x + 2y le 8, 3x + 2y le 12, x ge 0 , y ge 0 .

x + 2y le 3, 3x + 4y ge 12, x ge 0, y ge 1

3x + 4y le 60, x + 3y le 30, x ge 0, y ge 0

3x + 4y le 60, x ge 2y , x ge1 , y ge 0

x +2y le 3, 3x + 4y ge 12 , x ge 0, y ge 1

MODERN PUBLICATION-LINEAR PROGRAMMING -EXERCISE 12(b) (Long Answer Tyoe Questions(I)) (LATQ)
  1. Z= 4x + 7y x + 2y le 20, x + y le 15, x ge 0, y ge 0.

    Text Solution

    |

  2. Z = -3x + 4y x + 2y le 8, 3x + 2y le 12, x ge 0 , y ge 0.

    Text Solution

    |

  3. Z = 6x + 11y 2x + y le 104, x + 2y le 76, x, y ge 0

    Text Solution

    |

  4. Z = 7x + 4y 2x + y le 10, x + 2y le 12, x ge 0, y ge 0

    Text Solution

    |

  5. (i) Z = 20x + 10y x + 2y le 28, 3x + y le 24, x ge 2, x, y ge 0 (ii...

    Text Solution

    |

  6. Minimize (16-21): OBJECTIVE FUNCTION CONSTRAINTS Z = 200x + 500y ...

    Text Solution

    |

  7. Z = -3x + 4y x + 2y le 8, 3x + 2y le 12, x ge 0, y ge 0

    Text Solution

    |

  8. Z = 3x + 5y x + 3y ge 3, x + y ge 2,x ge 0, y ge 0

    Text Solution

    |

  9. Z = 2x + 3y x ge 0, y ge 0, 1 le x + 2y le10

    Text Solution

    |

  10. Z = 3x + 9y x + 3y le 60, x + y ge 10, x le y , x ge 0, y ge 0

    Text Solution

    |

  11. Z = 5x + 10y x + y ge 60, x + 2y le 120, x -2y ge 0, x, y ge 0

    Text Solution

    |

  12. Maximize if possible: (i) Z = 3x + 2y subject to the constraints: x ...

    Text Solution

    |

  13. Maximize: Z = -x + 2y, subject to the constraints: x ge 3, x + y ...

    Text Solution

    |

  14. Maximize : Z = x + y,subject to the constraints: x - y le -1, -x +...

    Text Solution

    |

  15. Minimize and Maximize(25-29): OBJECTIVE FUNCTION CONSTRAINTS Z = ...

    Text Solution

    |

  16. Z = 5x + 10y x + 2y le 120, x + y ge 60, x - 2y ge 0, x ge 0 , y ge ...

    Text Solution

    |

  17. Z = 15x + 30y x + y le 8, 2x + y ge 8, x - 2y ge 0, x, y ge 0

    Text Solution

    |

  18. Z = x + 2y x + 2y ge 100, x - y le 0, 2x + y le 200, x, y ge 0

    Text Solution

    |

  19. (i)Z = 3x + 2y x + 3y le 60, x + y ge 10, x le y, x, y ge 0 (ii)Z = ...

    Text Solution

    |

  20. Consider the following LPP: Maximize Z = 3x + 2y subject to the cons...

    Text Solution

    |