Home
Class 12
MATHS
(i) Z = 20x + 10y x + 2y le 28, 3x + y...

(i) `Z = 20x + 10y`
`x + 2y le 28, 3x + y le 24, x ge 2, x, y ge 0`
(ii)`Z = 7x + 10y`
`4x + 6y le 240, 6x + 3y le 240, x ge 10, x ge 0, y ge 0`
(iii)`Z = 22x + 44y` subject to the constraints:
`x + y ge 3, 3x + 8y le 24, x - y ge 0, x, y ge 0`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given linear programming problems step by step, we will follow the standard procedure of identifying the objective function, constraints, plotting the feasible region, finding the corner points, and evaluating the objective function at these points. ### Problem (i) **Objective Function:** \[ Z = 20x + 10y \] **Constraints:** 1. \( x + 2y \leq 28 \) 2. \( 3x + y \leq 24 \) 3. \( x \geq 2 \) 4. \( x, y \geq 0 \) #### Step 1: Graph the Constraints 1. **For \( x + 2y = 28 \)**: - \( x \)-intercept: Set \( y = 0 \) → \( x = 28 \) → Point (28, 0) - \( y \)-intercept: Set \( x = 0 \) → \( 2y = 28 \) → \( y = 14 \) → Point (0, 14) 2. **For \( 3x + y = 24 \)**: - \( x \)-intercept: Set \( y = 0 \) → \( 3x = 24 \) → \( x = 8 \) → Point (8, 0) - \( y \)-intercept: Set \( x = 0 \) → \( y = 24 \) → Point (0, 24) 3. **For \( x = 2 \)**: This is a vertical line at \( x = 2 \). 4. **Non-negativity constraints**: \( x \geq 0 \) and \( y \geq 0 \). #### Step 2: Identify the Feasible Region The feasible region is the area where all constraints overlap. It will be bounded by the lines we plotted and the axes. #### Step 3: Find Corner Points 1. Intersection of \( x + 2y = 28 \) and \( x = 2 \): - Substitute \( x = 2 \) into \( x + 2y = 28 \): \[ 2 + 2y = 28 \implies 2y = 26 \implies y = 13 \] - Point: (2, 13) 2. Intersection of \( 3x + y = 24 \) and \( x = 2 \): - Substitute \( x = 2 \) into \( 3x + y = 24 \): \[ 3(2) + y = 24 \implies 6 + y = 24 \implies y = 18 \] - Point: (2, 18) (not feasible since y cannot exceed 14) 3. Intersection of \( x + 2y = 28 \) and \( 3x + y = 24 \): - Solve the equations simultaneously: \[ x + 2y = 28 \] \[ 3x + y = 24 \] - From the first equation, \( y = \frac{28 - x}{2} \). Substitute into the second: \[ 3x + \frac{28 - x}{2} = 24 \] \[ 6x + 28 - x = 48 \] \[ 5x = 20 \implies x = 4 \] - Substitute \( x = 4 \) back into \( y \): \[ y = \frac{28 - 4}{2} = 12 \] - Point: (4, 12) 4. Intersection of \( x + 2y = 28 \) and \( y = 0 \): - Set \( y = 0 \): \[ x = 28 \] - Point: (28, 0) 5. Intersection of \( 3x + y = 24 \) and \( y = 0 \): - Set \( y = 0 \): \[ 3x = 24 \implies x = 8 \] - Point: (8, 0) #### Step 4: Evaluate the Objective Function at Corner Points 1. \( Z(2, 13) = 20(2) + 10(13) = 40 + 130 = 170 \) 2. \( Z(4, 12) = 20(4) + 10(12) = 80 + 120 = 200 \) 3. \( Z(8, 0) = 20(8) + 10(0) = 160 + 0 = 160 \) #### Step 5: Determine Maximum Value The maximum value of \( Z \) occurs at the point (4, 12): \[ Z_{\text{max}} = 200 \] ### Final Answer for Problem (i) The maximum value of \( Z \) is **200** at the point **(4, 12)**. --- ### Problem (ii) **Objective Function:** \[ Z = 7x + 10y \] **Constraints:** 1. \( 4x + 6y \leq 240 \) 2. \( 6x + 3y \leq 240 \) 3. \( x \geq 10 \) 4. \( x, y \geq 0 \) #### Step 1: Graph the Constraints 1. **For \( 4x + 6y = 240 \)**: - \( x \)-intercept: \( x = 60 \) → Point (60, 0) - \( y \)-intercept: \( y = 40 \) → Point (0, 40) 2. **For \( 6x + 3y = 240 \)**: - \( x \)-intercept: \( x = 40 \) → Point (40, 0) - \( y \)-intercept: \( y = 80 \) → Point (0, 80) 3. **For \( x = 10 \)**: This is a vertical line at \( x = 10 \). #### Step 2: Identify the Feasible Region The feasible region is where all constraints overlap, bounded by the lines and the axes. #### Step 3: Find Corner Points 1. Intersection of \( 4x + 6y = 240 \) and \( x = 10 \): - Substitute \( x = 10 \): \[ 4(10) + 6y = 240 \implies 40 + 6y = 240 \implies 6y = 200 \implies y = \frac{200}{6} \approx 33.33 \] - Point: (10, 33.33) 2. Intersection of \( 6x + 3y = 240 \) and \( x = 10 \): - Substitute \( x = 10 \): \[ 6(10) + 3y = 240 \implies 60 + 3y = 240 \implies 3y = 180 \implies y = 60 \] - Point: (10, 60) 3. Intersection of \( 4x + 6y = 240 \) and \( 6x + 3y = 240 \): - Solve simultaneously: \[ 4x + 6y = 240 \] \[ 6x + 3y = 240 \] - From the second equation, \( y = 80 - 2x \). Substitute into the first: \[ 4x + 6(80 - 2x) = 240 \] \[ 4x + 480 - 12x = 240 \] \[ -8x = -240 \implies x = 30 \] - Substitute \( x = 30 \) back into \( y \): \[ y = 80 - 2(30) = 20 \] - Point: (30, 20) 4. Intersection of \( 4x + 6y = 240 \) and \( y = 0 \): - Set \( y = 0 \): \[ 4x = 240 \implies x = 60 \] - Point: (60, 0) 5. Intersection of \( 6x + 3y = 240 \) and \( y = 0 \): - Set \( y = 0 \): \[ 6x = 240 \implies x = 40 \] - Point: (40, 0) #### Step 4: Evaluate the Objective Function at Corner Points 1. \( Z(10, 33.33) = 7(10) + 10(33.33) = 70 + 333.33 = 403.33 \) 2. \( Z(10, 60) = 7(10) + 10(60) = 70 + 600 = 670 \) 3. \( Z(30, 20) = 7(30) + 10(20) = 210 + 200 = 410 \) 4. \( Z(40, 0) = 7(40) + 10(0) = 280 + 0 = 280 \) 5. \( Z(60, 0) = 7(60) + 10(0) = 420 + 0 = 420 \) #### Step 5: Determine Maximum Value The maximum value of \( Z \) occurs at the point (10, 60): \[ Z_{\text{max}} = 670 \] ### Final Answer for Problem (ii) The maximum value of \( Z \) is **670** at the point **(10, 60)**. --- ### Problem (iii) **Objective Function:** \[ Z = 22x + 44y \] **Constraints:** 1. \( x + y \geq 3 \) 2. \( 3x + 8y \leq 24 \) 3. \( x - y \geq 0 \) 4. \( x, y \geq 0 \) #### Step 1: Graph the Constraints 1. **For \( x + y = 3 \)**: - \( x \)-intercept: \( x = 3 \) → Point (3, 0) - \( y \)-intercept: \( y = 3 \) → Point (0, 3) 2. **For \( 3x + 8y = 24 \)**: - \( x \)-intercept: \( x = 8 \) → Point (8, 0) - \( y \)-intercept: \( y = 3 \) → Point (0, 3) 3. **For \( x - y = 0 \)**: This is the line \( y = x \). #### Step 2: Identify the Feasible Region The feasible region is where all constraints overlap, bounded by the lines and the axes. #### Step 3: Find Corner Points 1. Intersection of \( x + y = 3 \) and \( x - y = 0 \): - Set \( y = x \): \[ x + x = 3 \implies 2x = 3 \implies x = \frac{3}{2} \] - Point: \(\left(\frac{3}{2}, \frac{3}{2}\right)\) 2. Intersection of \( 3x + 8y = 24 \) and \( x - y = 0 \): - Set \( y = x \): \[ 3x + 8x = 24 \implies 11x = 24 \implies x = \frac{24}{11} \] - Point: \(\left(\frac{24}{11}, \frac{24}{11}\right)\) 3. Intersection of \( 3x + 8y = 24 \) and \( x + y = 3 \): - Solve simultaneously: \[ 3x + 8(3 - x) = 24 \] \[ 3x + 24 - 8x = 24 \] \[ -5x = 0 \implies x = 0 \] - Substitute \( x = 0 \) into \( x + y = 3 \): \[ y = 3 \] - Point: (0, 3) 4. Intersection of \( x + y = 3 \) and \( y = 0 \): - Set \( y = 0 \): \[ x = 3 \] - Point: (3, 0) 5. Intersection of \( 3x + 8y = 24 \) and \( y = 0 \): - Set \( y = 0 \): \[ 3x = 24 \implies x = 8 \] - Point: (8, 0) #### Step 4: Evaluate the Objective Function at Corner Points 1. \( Z\left(\frac{3}{2}, \frac{3}{2}\right) = 22\left(\frac{3}{2}\right) + 44\left(\frac{3}{2}\right) = 33 + 66 = 99 \) 2. \( Z\left(\frac{24}{11}, \frac{24}{11}\right) = 22\left(\frac{24}{11}\right) + 44\left(\frac{24}{11}\right) = \frac{528}{11} + \frac{1056}{11} = \frac{1584}{11} \approx 144 \) 3. \( Z(0, 3) = 22(0) + 44(3) = 0 + 132 = 132 \) 4. \( Z(3, 0) = 22(3) + 44(0) = 66 + 0 = 66 \) #### Step 5: Determine Maximum Value The maximum value of \( Z \) occurs at the point \(\left(\frac{24}{11}, \frac{24}{11}\right)\): \[ Z_{\text{max}} \approx 144 \] ### Final Answer for Problem (iii) The maximum value of \( Z \) is approximately **144** at the point **\(\left(\frac{24}{11}, \frac{24}{11}\right)\)**. ---
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise EXERCISE 12 C (Long Answer Type Questions )|23 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise EXERCISE 12 C (MULTIPLE CHOICE QUESTIONS)|12 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise EXERCISE 12(b) (Short Answer Type Questions)|5 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise CHAPTER TEST (3)|12 Videos

Similar Questions

Explore conceptually related problems

x + y le 10, 4x + 3y le 24, x ge , x ge 0, y ge 0

x + 2y le 40, 2x + y le 40, x ge 0, y ge 0

3x + 4y le 60, x ge 2y , x ge1 , y ge 0

Minimize Z = 3x + 2y subject to the constraints : x + y ge 8, 3x + 5y le 15, x ge 0, y ge 0 .

Maximize : Z = x + y ,subject to the constraints: x - y le -1, -x + y le 0, x ge 0, y ge 0

Maximum Z = 3x + 5y subject to the constraints : x + 2y ge 10, x + y ge 6, 3x + y ge 8, x ge 0, y ge 0 .

Minimize Z = -3x + 4y subject ot constraints : x + 2y le 8, 3x + 2y le 12, x ge 0, y ge 0 .

Z = 5x + 10y x + y ge 60, x + 2y le 120, x -2y ge 0, x, y ge 0

Maximize Z = 5x + 3y subject to the constraints: 3x + 5y le 15, 5x + 2y le 10, x ge 0, y ge 0

MODERN PUBLICATION-LINEAR PROGRAMMING -EXERCISE 12(b) (Long Answer Tyoe Questions(I)) (LATQ)
  1. Z= 4x + 7y x + 2y le 20, x + y le 15, x ge 0, y ge 0.

    Text Solution

    |

  2. Z = -3x + 4y x + 2y le 8, 3x + 2y le 12, x ge 0 , y ge 0.

    Text Solution

    |

  3. Z = 6x + 11y 2x + y le 104, x + 2y le 76, x, y ge 0

    Text Solution

    |

  4. Z = 7x + 4y 2x + y le 10, x + 2y le 12, x ge 0, y ge 0

    Text Solution

    |

  5. (i) Z = 20x + 10y x + 2y le 28, 3x + y le 24, x ge 2, x, y ge 0 (ii...

    Text Solution

    |

  6. Minimize (16-21): OBJECTIVE FUNCTION CONSTRAINTS Z = 200x + 500y ...

    Text Solution

    |

  7. Z = -3x + 4y x + 2y le 8, 3x + 2y le 12, x ge 0, y ge 0

    Text Solution

    |

  8. Z = 3x + 5y x + 3y ge 3, x + y ge 2,x ge 0, y ge 0

    Text Solution

    |

  9. Z = 2x + 3y x ge 0, y ge 0, 1 le x + 2y le10

    Text Solution

    |

  10. Z = 3x + 9y x + 3y le 60, x + y ge 10, x le y , x ge 0, y ge 0

    Text Solution

    |

  11. Z = 5x + 10y x + y ge 60, x + 2y le 120, x -2y ge 0, x, y ge 0

    Text Solution

    |

  12. Maximize if possible: (i) Z = 3x + 2y subject to the constraints: x ...

    Text Solution

    |

  13. Maximize: Z = -x + 2y, subject to the constraints: x ge 3, x + y ...

    Text Solution

    |

  14. Maximize : Z = x + y,subject to the constraints: x - y le -1, -x +...

    Text Solution

    |

  15. Minimize and Maximize(25-29): OBJECTIVE FUNCTION CONSTRAINTS Z = ...

    Text Solution

    |

  16. Z = 5x + 10y x + 2y le 120, x + y ge 60, x - 2y ge 0, x ge 0 , y ge ...

    Text Solution

    |

  17. Z = 15x + 30y x + y le 8, 2x + y ge 8, x - 2y ge 0, x, y ge 0

    Text Solution

    |

  18. Z = x + 2y x + 2y ge 100, x - y le 0, 2x + y le 200, x, y ge 0

    Text Solution

    |

  19. (i)Z = 3x + 2y x + 3y le 60, x + y ge 10, x le y, x, y ge 0 (ii)Z = ...

    Text Solution

    |

  20. Consider the following LPP: Maximize Z = 3x + 2y subject to the cons...

    Text Solution

    |