Home
Class 12
MATHS
Minimize (16-21): OBJECTIVE FUNCTION C...

Minimize (16-21): OBJECTIVE FUNCTION CONSTRAINTS
`Z = 200x + 500y`
`x + 2y ge 10, 3x + 4y le 24, x ge 0, y ge 0`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given linear programming problem, we will follow these steps: ### Step 1: Define the Objective Function and Constraints We need to minimize the objective function: \[ Z = 200x + 500y \] Subject to the constraints: 1. \( x + 2y \geq 10 \) 2. \( 3x + 4y \leq 24 \) 3. \( x \geq 0 \) 4. \( y \geq 0 \) ### Step 2: Convert Inequalities to Equations To find the boundary lines of the constraints, we convert the inequalities into equations: 1. For \( x + 2y = 10 \) 2. For \( 3x + 4y = 24 \) ### Step 3: Find the Intercepts of the Constraints To graph these equations, we find the x-intercepts and y-intercepts. **For \( x + 2y = 10 \):** - When \( x = 0 \): \( 2y = 10 \) → \( y = 5 \) (y-intercept) - When \( y = 0 \): \( x = 10 \) (x-intercept) **For \( 3x + 4y = 24 \):** - When \( x = 0 \): \( 4y = 24 \) → \( y = 6 \) (y-intercept) - When \( y = 0 \): \( 3x = 24 \) → \( x = 8 \) (x-intercept) ### Step 4: Plot the Constraints Now we can plot these intercepts on a graph: - The line \( x + 2y = 10 \) intersects the axes at (10, 0) and (0, 5). - The line \( 3x + 4y = 24 \) intersects the axes at (8, 0) and (0, 6). ### Step 5: Identify the Feasible Region The feasible region is where the constraints overlap. We will check the direction of the inequalities: - For \( x + 2y \geq 10 \): The region is above the line. - For \( 3x + 4y \leq 24 \): The region is below the line. - Both \( x \geq 0 \) and \( y \geq 0 \) restrict us to the first quadrant. ### Step 6: Find the Corner Points of the Feasible Region The corner points of the feasible region can be found as follows: 1. Intersection of \( x + 2y = 10 \) and \( 3x + 4y = 24 \). To find the intersection, we can solve the equations simultaneously: - From \( x + 2y = 10 \), we can express \( x = 10 - 2y \). - Substitute into \( 3(10 - 2y) + 4y = 24 \): \[ 30 - 6y + 4y = 24 \] \[ -2y = -6 \] \[ y = 3 \] - Substitute \( y = 3 \) back into \( x + 2(3) = 10 \): \[ x + 6 = 10 \] \[ x = 4 \] Thus, the intersection point is \( (4, 3) \). ### Step 7: Evaluate the Objective Function at Each Corner Point Now we evaluate \( Z = 200x + 500y \) at the corner points: 1. At \( (0, 6) \): \[ Z = 200(0) + 500(6) = 3000 \] 2. At \( (0, 5) \): \[ Z = 200(0) + 500(5) = 2500 \] 3. At \( (4, 3) \): \[ Z = 200(4) + 500(3) = 800 + 1500 = 2300 \] ### Step 8: Determine the Minimum Value The minimum value of \( Z \) occurs at the point \( (4, 3) \): \[ \text{Minimum value of } Z = 2300 \] ### Final Answer The minimum value of the objective function \( Z \) is \( 2300 \) at the point \( (4, 3) \). ---
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise EXERCISE 12 C (Long Answer Type Questions )|23 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise EXERCISE 12 C (MULTIPLE CHOICE QUESTIONS)|12 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise EXERCISE 12(b) (Short Answer Type Questions)|5 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise CHAPTER TEST (3)|12 Videos

Similar Questions

Explore conceptually related problems

x + 2y le 3, 3x + 4y ge 12, x ge 0, y ge 1

x +2y le 3, 3x + 4y ge 12 , x ge 0, y ge 1

Solve the following Linear Programming Problems graphically: Maximize (6-15): OBJECTIVE FUNCTION CONSTRAINTS 6. Z = 6x + 8y x + y le 6, 3x + y ge 6, x - y ge 0, x ge 0, y ge 0

Minimize and Maximize(25-29): OBJECTIVE FUNCTION CONSTRAINTS Z = 3x + 9y x + 3y le 60, x + y ge 10, x le y , x ge 0, y ge 0

x + y le 10, 4x + 3y le 24, x ge , x ge 0, y ge 0

Z = -3x + 4y x + 2y le 8, 3x + 2y le 12, x ge 0, y ge 0

Z= 4x + 7y x + 2y le 20, x + y le 15, x ge 0, y ge 0 .

Z = 4x + y x + y le 50, 3x + y le 90, x ge 0, y ge 0

Z = -3x + 4y x + 2y le 8, 3x + 2y le 12, x ge 0 , y ge 0 .

MODERN PUBLICATION-LINEAR PROGRAMMING -EXERCISE 12(b) (Long Answer Tyoe Questions(I)) (LATQ)
  1. Z= 4x + 7y x + 2y le 20, x + y le 15, x ge 0, y ge 0.

    Text Solution

    |

  2. Z = -3x + 4y x + 2y le 8, 3x + 2y le 12, x ge 0 , y ge 0.

    Text Solution

    |

  3. Z = 6x + 11y 2x + y le 104, x + 2y le 76, x, y ge 0

    Text Solution

    |

  4. Z = 7x + 4y 2x + y le 10, x + 2y le 12, x ge 0, y ge 0

    Text Solution

    |

  5. (i) Z = 20x + 10y x + 2y le 28, 3x + y le 24, x ge 2, x, y ge 0 (ii...

    Text Solution

    |

  6. Minimize (16-21): OBJECTIVE FUNCTION CONSTRAINTS Z = 200x + 500y ...

    Text Solution

    |

  7. Z = -3x + 4y x + 2y le 8, 3x + 2y le 12, x ge 0, y ge 0

    Text Solution

    |

  8. Z = 3x + 5y x + 3y ge 3, x + y ge 2,x ge 0, y ge 0

    Text Solution

    |

  9. Z = 2x + 3y x ge 0, y ge 0, 1 le x + 2y le10

    Text Solution

    |

  10. Z = 3x + 9y x + 3y le 60, x + y ge 10, x le y , x ge 0, y ge 0

    Text Solution

    |

  11. Z = 5x + 10y x + y ge 60, x + 2y le 120, x -2y ge 0, x, y ge 0

    Text Solution

    |

  12. Maximize if possible: (i) Z = 3x + 2y subject to the constraints: x ...

    Text Solution

    |

  13. Maximize: Z = -x + 2y, subject to the constraints: x ge 3, x + y ...

    Text Solution

    |

  14. Maximize : Z = x + y,subject to the constraints: x - y le -1, -x +...

    Text Solution

    |

  15. Minimize and Maximize(25-29): OBJECTIVE FUNCTION CONSTRAINTS Z = ...

    Text Solution

    |

  16. Z = 5x + 10y x + 2y le 120, x + y ge 60, x - 2y ge 0, x ge 0 , y ge ...

    Text Solution

    |

  17. Z = 15x + 30y x + y le 8, 2x + y ge 8, x - 2y ge 0, x, y ge 0

    Text Solution

    |

  18. Z = x + 2y x + 2y ge 100, x - y le 0, 2x + y le 200, x, y ge 0

    Text Solution

    |

  19. (i)Z = 3x + 2y x + 3y le 60, x + y ge 10, x le y, x, y ge 0 (ii)Z = ...

    Text Solution

    |

  20. Consider the following LPP: Maximize Z = 3x + 2y subject to the cons...

    Text Solution

    |