Home
Class 12
MATHS
Z = -3x + 4y x + 2y le 8, 3x + 2y le 1...

`Z = -3x + 4y`
`x + 2y le 8, 3x + 2y le 12, x ge 0, y ge 0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the linear programming problem given by the objective function and constraints, we will follow these steps: ### Step 1: Write the Objective Function and Constraints The objective function we want to maximize or minimize is given by: \[ Z = -3x + 4y \] The constraints are: 1. \( x + 2y \leq 8 \) 2. \( 3x + 2y \leq 12 \) 3. \( x \geq 0 \) 4. \( y \geq 0 \) ### Step 2: Convert Constraints to Equations To find the feasible region, we need to convert the inequalities into equations: 1. \( x + 2y = 8 \) 2. \( 3x + 2y = 12 \) ### Step 3: Find Intercepts of the Constraints **For the first constraint \( x + 2y = 8 \):** - **x-intercept:** Set \( y = 0 \): \[ x + 2(0) = 8 \Rightarrow x = 8 \] - **y-intercept:** Set \( x = 0 \): \[ 0 + 2y = 8 \Rightarrow y = 4 \] So, the intercepts are \( (8, 0) \) and \( (0, 4) \). **For the second constraint \( 3x + 2y = 12 \):** - **x-intercept:** Set \( y = 0 \): \[ 3x + 2(0) = 12 \Rightarrow x = 4 \] - **y-intercept:** Set \( x = 0 \): \[ 3(0) + 2y = 12 \Rightarrow y = 6 \] So, the intercepts are \( (4, 0) \) and \( (0, 6) \). ### Step 4: Plot the Constraints on a Graph Plot the points found from the intercepts on a graph. The lines will divide the plane into regions. The feasible region will be where all constraints overlap, considering \( x \geq 0 \) and \( y \geq 0 \). ### Step 5: Identify the Feasible Region The feasible region is bounded by the lines \( x + 2y = 8 \) and \( 3x + 2y = 12 \), along with the axes. The vertices of the feasible region are the points where the constraints intersect. ### Step 6: Find the Intersection of the Constraints To find the intersection of the lines \( x + 2y = 8 \) and \( 3x + 2y = 12 \): 1. Subtract the first equation from the second: \[ (3x + 2y) - (x + 2y) = 12 - 8 \] \[ 2x = 4 \Rightarrow x = 2 \] 2. Substitute \( x = 2 \) into \( x + 2y = 8 \): \[ 2 + 2y = 8 \Rightarrow 2y = 6 \Rightarrow y = 3 \] Thus, the intersection point is \( (2, 3) \). ### Step 7: Evaluate the Objective Function at Each Vertex The vertices of the feasible region are: 1. \( (0, 4) \) 2. \( (2, 3) \) 3. \( (4, 0) \) 4. \( (0, 0) \) Now, evaluate \( Z = -3x + 4y \) at each vertex: 1. At \( (0, 4) \): \[ Z = -3(0) + 4(4) = 16 \] 2. At \( (2, 3) \): \[ Z = -3(2) + 4(3) = -6 + 12 = 6 \] 3. At \( (4, 0) \): \[ Z = -3(4) + 4(0) = -12 \] 4. At \( (0, 0) \): \[ Z = -3(0) + 4(0) = 0 \] ### Step 8: Determine Maximum and Minimum Values From the evaluations: - Maximum value of \( Z \) is \( 16 \) at \( (0, 4) \). - Minimum value of \( Z \) is \( -12 \) at \( (4, 0) \). ### Final Answer - Maximum value of \( Z \) is \( 16 \) at the point \( (0, 4) \). - Minimum value of \( Z \) is \( -12 \) at the point \( (4, 0) \). ---
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise EXERCISE 12 C (Long Answer Type Questions )|23 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise EXERCISE 12 C (MULTIPLE CHOICE QUESTIONS)|12 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise EXERCISE 12(b) (Short Answer Type Questions)|5 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise CHAPTER TEST (3)|12 Videos

Similar Questions

Explore conceptually related problems

x + 2y le 3, 3x + 4y ge 12, x ge 0, y ge 1

2x + y le 6, x + 2y le 8, x ge 0, y ge 0

y - 2x le 1, x + y le 2, x ge 0, y ge 0

x +2y le 3, 3x + 4y ge 12 , x ge 0, y ge 1

x + 2y le 40, 2x + y le 40, x ge 0, y ge 0

x-y le 2, x + y le 4 , x ge 0, y ge

Z =3x + 2y x + 2y le 10, 3x + y le 15, x ge 0, y ge 0

Z = 7x + 4y 2x + y le 10, x + 2y le 12, x ge 0, y ge 0

Z =13x + 3y x + y le 6, 3x + 2y le 15, x ge 0, y ge 0 .

3x + 4y le 60, x + 3y le 30, x ge 0, y ge 0

MODERN PUBLICATION-LINEAR PROGRAMMING -EXERCISE 12(b) (Long Answer Tyoe Questions(I)) (LATQ)
  1. Z= 4x + 7y x + 2y le 20, x + y le 15, x ge 0, y ge 0.

    Text Solution

    |

  2. Z = -3x + 4y x + 2y le 8, 3x + 2y le 12, x ge 0 , y ge 0.

    Text Solution

    |

  3. Z = 6x + 11y 2x + y le 104, x + 2y le 76, x, y ge 0

    Text Solution

    |

  4. Z = 7x + 4y 2x + y le 10, x + 2y le 12, x ge 0, y ge 0

    Text Solution

    |

  5. (i) Z = 20x + 10y x + 2y le 28, 3x + y le 24, x ge 2, x, y ge 0 (ii...

    Text Solution

    |

  6. Minimize (16-21): OBJECTIVE FUNCTION CONSTRAINTS Z = 200x + 500y ...

    Text Solution

    |

  7. Z = -3x + 4y x + 2y le 8, 3x + 2y le 12, x ge 0, y ge 0

    Text Solution

    |

  8. Z = 3x + 5y x + 3y ge 3, x + y ge 2,x ge 0, y ge 0

    Text Solution

    |

  9. Z = 2x + 3y x ge 0, y ge 0, 1 le x + 2y le10

    Text Solution

    |

  10. Z = 3x + 9y x + 3y le 60, x + y ge 10, x le y , x ge 0, y ge 0

    Text Solution

    |

  11. Z = 5x + 10y x + y ge 60, x + 2y le 120, x -2y ge 0, x, y ge 0

    Text Solution

    |

  12. Maximize if possible: (i) Z = 3x + 2y subject to the constraints: x ...

    Text Solution

    |

  13. Maximize: Z = -x + 2y, subject to the constraints: x ge 3, x + y ...

    Text Solution

    |

  14. Maximize : Z = x + y,subject to the constraints: x - y le -1, -x +...

    Text Solution

    |

  15. Minimize and Maximize(25-29): OBJECTIVE FUNCTION CONSTRAINTS Z = ...

    Text Solution

    |

  16. Z = 5x + 10y x + 2y le 120, x + y ge 60, x - 2y ge 0, x ge 0 , y ge ...

    Text Solution

    |

  17. Z = 15x + 30y x + y le 8, 2x + y ge 8, x - 2y ge 0, x, y ge 0

    Text Solution

    |

  18. Z = x + 2y x + 2y ge 100, x - y le 0, 2x + y le 200, x, y ge 0

    Text Solution

    |

  19. (i)Z = 3x + 2y x + 3y le 60, x + y ge 10, x le y, x, y ge 0 (ii)Z = ...

    Text Solution

    |

  20. Consider the following LPP: Maximize Z = 3x + 2y subject to the cons...

    Text Solution

    |