Home
Class 12
MATHS
Z = 2x + 3y x ge 0, y ge 0, 1 le x + 2...

`Z = 2x + 3y`
`x ge 0, y ge 0, 1 le x + 2y le10`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the linear programming problem given by the objective function \( Z = 2x + 3y \) with the constraints \( x \geq 0 \), \( y \geq 0 \), and \( 1 \leq x + 2y \leq 10 \), we will follow these steps: ### Step 1: Identify the Constraints The constraints can be expressed as: 1. \( x + 2y \geq 1 \) 2. \( x + 2y \leq 10 \) 3. \( x \geq 0 \) 4. \( y \geq 0 \) ### Step 2: Convert Constraints to Equations To find the boundary lines, we convert the inequalities into equations: 1. \( x + 2y = 1 \) 2. \( x + 2y = 10 \) ### Step 3: Find Intercepts For the equation \( x + 2y = 1 \): - When \( x = 0 \): \( 2y = 1 \) → \( y = \frac{1}{2} \) (y-intercept) - When \( y = 0 \): \( x = 1 \) (x-intercept) For the equation \( x + 2y = 10 \): - When \( x = 0 \): \( 2y = 10 \) → \( y = 5 \) (y-intercept) - When \( y = 0 \): \( x = 10 \) (x-intercept) ### Step 4: Plot the Lines Now we plot the lines on a graph: - The line \( x + 2y = 1 \) intersects the axes at \( (1, 0) \) and \( (0, \frac{1}{2}) \). - The line \( x + 2y = 10 \) intersects the axes at \( (10, 0) \) and \( (0, 5) \). ### Step 5: Identify the Feasible Region The feasible region is bounded by the lines and the axes. It is the area where all constraints are satisfied. ### Step 6: Determine Corner Points The corner points of the feasible region are: 1. \( (0, \frac{1}{2}) \) 2. \( (1, 0) \) 3. \( (10, 0) \) 4. \( (0, 5) \) ### Step 7: Evaluate the Objective Function at Each Corner Point Now we will substitute these points into the objective function \( Z = 2x + 3y \): 1. For \( (0, \frac{1}{2}) \): \[ Z = 2(0) + 3\left(\frac{1}{2}\right) = 0 + \frac{3}{2} = 1.5 \] 2. For \( (1, 0) \): \[ Z = 2(1) + 3(0) = 2 + 0 = 2 \] 3. For \( (10, 0) \): \[ Z = 2(10) + 3(0) = 20 + 0 = 20 \] 4. For \( (0, 5) \): \[ Z = 2(0) + 3(5) = 0 + 15 = 15 \] ### Step 8: Identify Maximum and Minimum Values From the calculations: - Minimum value of \( Z \) is \( 1.5 \) at point \( (0, \frac{1}{2}) \). - Maximum value of \( Z \) is \( 20 \) at point \( (10, 0) \). ### Final Solution - Minimum value of \( Z \) is \( 1.5 \) at \( (0, \frac{1}{2}) \). - Maximum value of \( Z \) is \( 20 \) at \( (10, 0) \).
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise EXERCISE 12 C (Long Answer Type Questions )|23 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise EXERCISE 12 C (MULTIPLE CHOICE QUESTIONS)|12 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise EXERCISE 12(b) (Short Answer Type Questions)|5 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise CHAPTER TEST (3)|12 Videos

Similar Questions

Explore conceptually related problems

Z = x + 2y x + 2y ge 100, x - y le 0, 2x + y le 200, x, y ge 0

(i) Z = 3x + 2y x + 3y le 60, x + y ge 10, x le y, x, y ge 0 (ii) Z = 800x + 1200y 3x + 4y ge 80, x + 3y le 30, x ge 0, y ge 0 .

(a) Draw the feasible region of inequation: x + y le 4, x ge 0, y ge 0 (b) Draw the graph of the following LPP: 3x + y le 17, x, y ge 0 (c) Shade the feasible region of LLP: (i) x + 3y ge 3, x + y ge 2, x ge 0, y ge 0 (ii) x + 2y le 8, 3x + 2y le 12, x ge 0, y ge 0

y - 2x le 1, x + y le 2, x ge 0, y ge 0

Z = 3x + 9y x + 3y le 60, x + y ge 10, x le y , x ge 0, y ge 0

Z = 5x + 10y x + 2y le 120, x + y ge 60, x - 2y ge 0, x ge 0 , y ge 0 .

For the system for linear inequations x + y le 6, 3x + 5y ge 15, x ge 0, y ge 0, If Z = 3x + 2y, then the maximum value of Z occurs at :

Z = 15x + 30y x + y le 8, 2x + y ge 8, x - 2y ge 0, x, y ge 0

Z = 4x + y x + y le 50, 3x + y le 90, x ge 0, y ge 0

MODERN PUBLICATION-LINEAR PROGRAMMING -EXERCISE 12(b) (Long Answer Tyoe Questions(I)) (LATQ)
  1. Z= 4x + 7y x + 2y le 20, x + y le 15, x ge 0, y ge 0.

    Text Solution

    |

  2. Z = -3x + 4y x + 2y le 8, 3x + 2y le 12, x ge 0 , y ge 0.

    Text Solution

    |

  3. Z = 6x + 11y 2x + y le 104, x + 2y le 76, x, y ge 0

    Text Solution

    |

  4. Z = 7x + 4y 2x + y le 10, x + 2y le 12, x ge 0, y ge 0

    Text Solution

    |

  5. (i) Z = 20x + 10y x + 2y le 28, 3x + y le 24, x ge 2, x, y ge 0 (ii...

    Text Solution

    |

  6. Minimize (16-21): OBJECTIVE FUNCTION CONSTRAINTS Z = 200x + 500y ...

    Text Solution

    |

  7. Z = -3x + 4y x + 2y le 8, 3x + 2y le 12, x ge 0, y ge 0

    Text Solution

    |

  8. Z = 3x + 5y x + 3y ge 3, x + y ge 2,x ge 0, y ge 0

    Text Solution

    |

  9. Z = 2x + 3y x ge 0, y ge 0, 1 le x + 2y le10

    Text Solution

    |

  10. Z = 3x + 9y x + 3y le 60, x + y ge 10, x le y , x ge 0, y ge 0

    Text Solution

    |

  11. Z = 5x + 10y x + y ge 60, x + 2y le 120, x -2y ge 0, x, y ge 0

    Text Solution

    |

  12. Maximize if possible: (i) Z = 3x + 2y subject to the constraints: x ...

    Text Solution

    |

  13. Maximize: Z = -x + 2y, subject to the constraints: x ge 3, x + y ...

    Text Solution

    |

  14. Maximize : Z = x + y,subject to the constraints: x - y le -1, -x +...

    Text Solution

    |

  15. Minimize and Maximize(25-29): OBJECTIVE FUNCTION CONSTRAINTS Z = ...

    Text Solution

    |

  16. Z = 5x + 10y x + 2y le 120, x + y ge 60, x - 2y ge 0, x ge 0 , y ge ...

    Text Solution

    |

  17. Z = 15x + 30y x + y le 8, 2x + y ge 8, x - 2y ge 0, x, y ge 0

    Text Solution

    |

  18. Z = x + 2y x + 2y ge 100, x - y le 0, 2x + y le 200, x, y ge 0

    Text Solution

    |

  19. (i)Z = 3x + 2y x + 3y le 60, x + y ge 10, x le y, x, y ge 0 (ii)Z = ...

    Text Solution

    |

  20. Consider the following LPP: Maximize Z = 3x + 2y subject to the cons...

    Text Solution

    |